The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (10): 1331-1337.doi: 10.3969/j.issn.1006-5725.2024.10.001
• Comments • Next Articles
Received:
2023-10-21
Online:
2024-05-25
Published:
2024-05-21
Contact:
Xiaoshi. ZHANG
E-mail:zhangxsh@sysucc.org.cn
CLC Number:
Xizhi WEN,Xiaoshi. ZHANG. Immunotherapy based on neoantigen: A personalized treatment strategy for melanoma[J]. The Journal of Practical Medicine, 2024, 40(10): 1331-1337.
1 |
CURTI B D, FARIES M B. Recent Advances in the Treatment of Melanoma[J]. N Engl J Med, 2021, 384(23):2229-2240. doi:10.1056/nejmra2034861
doi: 10.1056/nejmra2034861 |
2 |
LARKIN J, CHIARION-SILENI V, GONZALEZ R, et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma[J]. N Engl J Med, 2019, 381(16):1535-1546. doi:10.1056/nejmoa1910836
doi: 10.1056/nejmoa1910836 |
3 |
OLIVEIRA G, STROMHAUG K, KLAEGER S, et al. Phenotype, specificity and avidity of antitumour CD8(+) T cells in melanoma[J]. Nature, 2021, 596(7870):119-125. doi:10.1038/s41586-021-03704-y
doi: 10.1038/s41586-021-03704-y |
4 |
KIM J M, CHEN D S. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure)[J]. Ann Oncol, 2016, 27(8):1492-1504. doi:10.1093/annonc/mdw217
doi: 10.1093/annonc/mdw217 |
5 |
VESELY M D, ZHANG T, CHEN L. Resistance Mechanisms to Anti-PD Cancer Immunotherapy[J]. Annu Rev Immunol, 2022, 40:45-74. doi:10.1146/annurev-immunol-070621-030155
doi: 10.1146/annurev-immunol-070621-030155 |
6 |
DESAI R, COXON A T, DUNN G P. Therapeutic applications of the cancer immunoediting hypothesis[J]. Semin Cancer Biol, 2022, 78:63-77. doi:10.1016/j.semcancer.2021.03.002
doi: 10.1016/j.semcancer.2021.03.002 |
7 |
GHORANI E, SWANTON C, QUEZADA S A. Cancer cell-intrinsic mechanisms driving acquired immune tolerance[J]. Immunity, 2023, 56(10):2270-2295. doi:10.1016/j.immuni.2023.09.004
doi: 10.1016/j.immuni.2023.09.004 |
8 |
SUN Q, HONG Z, ZHANG C, et al. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends[J]. Signal Transduct Target Ther, 2023, 8(1):320. doi:10.1038/s41392-023-01522-4
doi: 10.1038/s41392-023-01522-4 |
9 |
CHANDRAN S S, KLEBANOFF C A. T cell receptor-based cancer immunotherapy: Emerging efficacy and pathways of resistance[J]. Immunol Rev, 2019, 290(1):127-147. doi:10.1111/imr.12772
doi: 10.1111/imr.12772 |
10 |
SCHUMACHER T N, SCHREIBER R D. Neoantigens in cancer immunotherapy[J]. Science, 2015, 348(6230):69-74. doi:10.1126/science.aaa4971
doi: 10.1126/science.aaa4971 |
11 |
WACH M M, SUBJECK J R, WANG X Y, et al. Recombinant human Hsp110-gp100 chaperone complex vaccine is nontoxic and induces response in advanced stage melanoma patients[J]. Melanoma Res, 2022, 32(2):88-97. doi:10.1097/cmr.0000000000000796
doi: 10.1097/cmr.0000000000000796 |
12 |
GORDY J T, LUO K, ZHANG H, et al. Fusion of the dendritic cell-targeting chemokine MIP3α to melanoma antigen Gp100 in a therapeutic DNA vaccine significantly enhances immunogenicity and survival in a mouse melanoma model[J]. J Immunother Cancer, 2016, 4:96. doi:10.1186/s40425-016-0189-y
doi: 10.1186/s40425-016-0189-y |
13 |
YAN J, TINGEY C, LYDE R, et al. Novel and enhanced anti-melanoma DNA vaccine targeting the tyrosinase protein inhibits myeloid-derived suppressor cells and tumor growth in a syngeneic prophylactic and therapeutic murine model[J]. Cancer Gene Ther, 2014, 21(12):507-517. doi:10.1038/cgt.2014.56
doi: 10.1038/cgt.2014.56 |
14 |
GROB J J, MORTIER L, D'HONDT L, et al. Safety and immunogenicity of MAGE-A3 cancer immunotherapeutic with dacarbazine in patients with MAGE-A3-positive metastatic cutaneous melanoma: an open phase I/II study with a first assessment of a predictive gene signature[J]. ESMO Open, 2017, 2(5):e000203. doi:10.1136/esmoopen-2017-000203
doi: 10.1136/esmoopen-2017-000203 |
15 |
DRENO B, THOMPSON J F, SMITHERS B M, et al. MAGE-A3 immunotherapeutic as adjuvant therapy for patients with resected, MAGE-A3-positive, stage Ⅲ melanoma (DERMA): a double-blind, randomised, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2018, 19(7):916-929. doi:10.1016/s1470-2045(18)30254-7
doi: 10.1016/s1470-2045(18)30254-7 |
16 |
SCHWARTZENTRUBER D J, LAWSON D H, RICHARDS J M, et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma[J]. N Engl J Med, 2011, 364(22):2119-2127. doi:10.1056/nejmoa1012863
doi: 10.1056/nejmoa1012863 |
17 |
XIE N, SHEN G, GAO W, et al. Neoantigens: promising targets for cancer therapy[J]. Signal Transduct Target Ther, 2023, 8(1):9. doi:10.1038/s41392-022-01270-x
doi: 10.1038/s41392-022-01270-x |
18 |
YARCHOAN M, JOHNSON B A 3rd, LUTZ E R, et al. Targeting neoantigens to augment antitumour immunity[J]. Nat Rev Cancer, 2017, 17(4):209-222. doi:10.1038/nrc.2016.154
doi: 10.1038/nrc.2016.154 |
19 |
LI J, XIAO Z, WANG D, et al. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells[J]. Mol Cancer, 2023, 22(1):141. doi:10.1186/s12943-023-01844-5
doi: 10.1186/s12943-023-01844-5 |
20 |
PERI A, SALOMON N, WOLF Y, et al. The landscape of T cell antigens for cancer immunotherapy[J]. Nat Cancer, 2023, 4(7):937-954. doi:10.1038/s43018-023-00588-x
doi: 10.1038/s43018-023-00588-x |
21 |
TURAJLIC S, LITCHFIELD K, XU H, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis[J]. Lancet Oncol, 2017, 18(8):1009-1021. doi:10.1016/s1470-2045(17)30516-8
doi: 10.1016/s1470-2045(17)30516-8 |
22 |
TEIXIDO C, CASTILLO P, MARTINEZ-VILA C, et al. Molecular Markers and Targets in Melanoma[J]. Cells, 2021, 10(9):2320. doi:10.3390/cells10092320
doi: 10.3390/cells10092320 |
23 |
YARCHOAN M, HOPKINS A, JAFFEE E M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition[J]. N Engl J Med, 2017, 377(25):2500-2501. doi:10.1056/nejmc1713444
doi: 10.1056/nejmc1713444 |
24 |
GONZÁLEZ F E, GLEISNER A, FALCóN-BEAS F, et al. Tumor cell lysates as immunogenic sources for cancer vaccine design[J]. Hum Vaccin Immunother, 2014, 10(11):3261-3269. doi:10.4161/21645515.2014.982996
doi: 10.4161/21645515.2014.982996 |
25 |
LIPSON E J, SHARFMAN W H, CHEN S, et al. Safety and immunologic correlates of Melanoma GVAX, a GM-CSF secreting allogeneic melanoma cell vaccine administered in the adjuvant setting[J]. J Transl Med, 2015, 13:214. doi:10.1186/s12967-015-0572-3
doi: 10.1186/s12967-015-0572-3 |
26 |
KATSIKIS P D, ISHII K J, SCHLIEHE C. Challenges in developing personalized neoantigen cancer vaccines[J]. Nat Rev Immunol, 2024,24(3):213-227. doi:10.1038/s41577-023-00937-y
doi: 10.1038/s41577-023-00937-y |
27 |
D'ALISE A M, SCARSELLI E. Getting personal in metastatic melanoma: neoantigen-based vaccines as a new therapeutic strategy[J]. Curr Opin Oncol, 2023, 35(2):94-99. doi:10.1097/cco.0000000000000923
doi: 10.1097/cco.0000000000000923 |
28 |
BAFALOUKOS D, GAZOULI I, KOUTSERIMPAS C, et al. Evolution and Progress of mRNA Vaccines in the Treatment of Melanoma: Future Prospects[J]. Vaccines (Basel), 2023, 11(3):636. doi:10.3390/vaccines11030636
doi: 10.3390/vaccines11030636 |
29 |
CARRENO B M, MAGRINI V, BECKER-HAPAK M, et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells[J]. Science, 2015, 348(6236):803-808. doi:10.1126/science.aaa3828
doi: 10.1126/science.aaa3828 |
30 |
ROSENBERG S A, PACKARD B S, AEBERSOLD P M, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report[J]. N Engl J Med, 1988, 319(25):1676-1680. doi:10.1056/nejm198812223192527
doi: 10.1056/nejm198812223192527 |
31 |
ROSENBERG S A, YANG J C, SHERRY R M, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy[J]. Clin Cancer Res, 2011, 17(13):4550-4557. doi:10.1158/1078-0432.ccr-11-0116
doi: 10.1158/1078-0432.ccr-11-0116 |
32 |
HE J, XIONG X, YANG H, et al. Defined tumor antigen-specific T cells potentiate personalized TCR-T cell therapy and prediction of immunotherapy response[J]. Cell Res, 2022, 32(6):530-542. doi:10.1038/s41422-022-00627-9
doi: 10.1038/s41422-022-00627-9 |
33 |
LI D, CHEN C, LI J, et al. A pilot study of lymphodepletion intensity for peripheral blood mononuclear cell-derived neoantigen-specific CD8+ T cell therapy in patients with advanced solid tumors[J]. Nat Commun, 2023, 14(1):3447. doi:10.1038/s41467-023-39225-7
doi: 10.1038/s41467-023-39225-7 |
34 |
MüLLER M, HUBER F, ARNAUD M, et al. Machine learning methods and harmonized datasets improve immunogenic neoantigen prediction[J]. Immunity, 2023, 56(11):2650-2663.e6. doi:10.1016/j.immuni.2023.09.002
doi: 10.1016/j.immuni.2023.09.002 |
35 |
RICKER C A, MELI K, VAN ALLEN E M. Historical perspective and future directions: computational science in immuno-oncology[J]. J Immunother Cancer, 2024, 12(1):e008306. doi:10.1136/jitc-2023-008306
doi: 10.1136/jitc-2023-008306 |
36 |
CHONG C, COUKOS G, BASSANI-STERNBERG M. Identification of tumor antigens with immunopeptidomics[J]. Nat Biotechnol, 2022, 40(2):175-188. doi:10.1038/s41587-021-01038-8
doi: 10.1038/s41587-021-01038-8 |
37 |
HOENISCH GRAVEL N, NELDE A, BAUER J, et al. TOF(IMS) mass spectrometry-based immunopeptidomics refines tumor antigen identification[J]. Nat Commun, 2023, 14(1):7472. doi:10.1038/s41467-023-42692-7
doi: 10.1038/s41467-023-42692-7 |
38 |
ROESLER A S, ANDERSON K S. Beyond Sequencing: Prioritizing and Delivering Neoantigens for Cancer Vaccines[J]. Methods Mol Biol, 2022, 2410:649-670. doi:10.1007/978-1-0716-1884-4_35
doi: 10.1007/978-1-0716-1884-4_35 |
39 |
MINEGISHI Y, HAGA Y, UEDA K. Emerging potential of immunopeptidomics by mass spectrometry in cancer immunotherapy[J]. Cancer Sci, 2024. doi:10.1111/cas.16118 .
doi: 10.1111/cas.16118 |
40 |
OTT P A, HU Z, KESKIN D B, et al. An immunogenic personal neoantigen vaccine for patients with melanoma[J]. Nature, 2017, 547(7662):217-221. doi:10.1038/nature22991
doi: 10.1038/nature22991 |
41 | SAHIN U, DERHOVANESSIAN E, MILLER M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer[J]. Nature, 2017, 547(7662):222-226. |
42 |
WEBER J S, CARLINO M S, KHATTAK A, et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study[J]. Lancet, 2024, 403(10427):632-644. doi:10.1016/s0140-6736(23)02268-7
doi: 10.1016/s0140-6736(23)02268-7 |
43 |
VAN DEN BERG J H, HEEMSKERK B, VAN ROOIJ N, et al. Tumor infiltrating lymphocytes (TIL) therapy in metastatic melanoma: boosting of neoantigen-specific T cell reactivity and long-term follow-up[J]. J Immunother Cancer, 2020, 8(2):e000848. doi:10.1136/jitc-2020-000848
doi: 10.1136/jitc-2020-000848 |
44 |
SARNAIK A A, HAMID O, KHUSHALANI N I, et al. Lifileucel, a Tumor-Infiltrating Lymphocyte Therapy, in Metastatic Melanoma[J]. J Clin Oncol, 2021, 39(24):2656-2666. doi:10.1200/jco.21.00612
doi: 10.1200/jco.21.00612 |
45 | ROHAAN M W, BORCH T H, VAN DEN BERG J H, et al. Tumor-Infiltrating Lymphocyte Therapy or Ipilimumab in Advanced Melanoma[J]. N Engl J Med, 2022, 387(23):2113-2125. |
46 |
CAUSHI J X, ZHANG J, JI Z, et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers[J]. Nature, 2021, 596(7870):126-132. doi:10.1038/s41586-021-03752-4
doi: 10.1038/s41586-021-03752-4 |
47 |
KLEBANOFF C A, CHANDRAN S S, BAKER B M, et al. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome[J]. Nat Rev Drug Discov, 2023, 22(12):996-1017. doi:10.1038/s41573-023-00809-z
doi: 10.1038/s41573-023-00809-z |
48 |
GROENEVELDT C, KINDERMAN P, VAN DEN WOLLENBERG D, et al. Preconditioning of the tumor microenvironment with oncolytic reovirus converts CD3-bispecific antibody treatment into effective immunotherapy[J]. J Immunother Cancer, 2020, 8(2):e001191. doi:10.1136/jitc-2020-001191
doi: 10.1136/jitc-2020-001191 |
49 |
GERBER H P, PRESTA L G. TCR mimic compounds for pHLA targeting with high potency modalities in oncology[J]. Front Oncol, 2022, 12:1027548. doi:10.3389/fonc.2022.1027548
doi: 10.3389/fonc.2022.1027548 |
50 |
HASSEL J C, PIPERNO-NEUMANN S, RUTKOWSKI P, et al. Three-Year Overall Survival with Tebentafusp in Metastatic Uveal Melanoma[J]. N Engl J Med, 2023, 389(24):2256-2266. doi:10.1056/nejmoa2304753
doi: 10.1056/nejmoa2304753 |
51 |
SHEN Y, WEI X, JIN S, et al. TCR-mimic antibody-drug conjugates targeting intracellular tumor-specific mutant antigen KRAS G12V mutation[J]. Asian J Pharm Sci, 2020, 15(6):777-785. doi:10.1016/j.ajps.2020.01.002
doi: 10.1016/j.ajps.2020.01.002 |
52 |
DOUGLASS J, HSIUE E H, MOG B J, et al. Bispecific antibodies targeting mutant RAS neoantigens[J]. Sci Immunol, 2021, 6(57):eabd5515. doi:10.1126/sciimmunol.abd5515
doi: 10.1126/sciimmunol.abd5515 |
53 |
HSIUE E H, WRIGHT K M, DOUGLASS J, et al. Targeting a neoantigen derived from a common TP53 mutation[J]. Science, 2021, 371(6533):eabc8697. doi:10.1126/science.abc8697
doi: 10.1126/science.abc8697 |
54 |
SHI Y, JING B, XI R. Comprehensive analysis of neoantigens derived from structural variation across whole genomes from 2528 tumors[J]. Genome Biol, 2023, 24(1):169. doi:10.1186/s13059-023-03005-9
doi: 10.1186/s13059-023-03005-9 |
55 |
HUANG F, LI J, WEN X, et al. Next-generation sequencing in advanced Chinese melanoma reveals therapeutic targets and prognostic biomarkers for immunotherapy[J]. Sci Rep, 2022, 12(1):9559. doi:10.1038/s41598-022-13391-y
doi: 10.1038/s41598-022-13391-y |
56 |
MENG W, SCHREIBER R D, LICHTI C F. Recent advances in immunopeptidomic-based tumor neoantigen discovery[J]. Adv Immunol, 2023, 160:1-36. doi:10.1016/bs.ai.2023.10.001
doi: 10.1016/bs.ai.2023.10.001 |
57 |
POOLE A, KARUPPIAH V, HARTT A, et al. Therapeutic high affinity T cell receptor targeting a KRAS(G12D) cancer neoantigen[J]. Nat Commun, 2022, 13(1):5333. doi:10.1038/s41467-022-32811-1
doi: 10.1038/s41467-022-32811-1 |
58 |
CHANDRAN S S, MA J, KLATT M G, et al. Immunogenicity and therapeutic targeting of a public neoantigen derived from mutated PIK3CA[J]. Nat Med, 2022, 28(5):946-957. doi:10.1038/s41591-022-01786-3
doi: 10.1038/s41591-022-01786-3 |
59 |
CROSBY E J, HARTMAN Z C, LYERLY H K. Beyond Neoantigens: Antigens Derived from Tumor Drivers as Cancer Vaccine Targets[J]. Clin Cancer Res, 2023, 29(17):3256-3258. doi:10.1158/1078-0432.ccr-23-1244
doi: 10.1158/1078-0432.ccr-23-1244 |
60 |
ZHANG R, TANG L, WANG Y, et al. A Dendrimer Peptide (KK2DP7) Delivery System with Dual Functions of Lymph Node Targeting and Immune Adjuvants as a General Strategy for Cancer Immunotherapy[J]. Adv Sci (Weinh), 2023, 10(15):e2300116. doi:10.1002/advs.202300116
doi: 10.1002/advs.202300116 |
61 |
PANT S, WAINBERG Z A, WEEKES C D, et al. Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial[J]. Nat Med, 2024, 30(2):531-542. doi:10.1038/s41591-023-02760-3
doi: 10.1038/s41591-023-02760-3 |
[1] | Jiang SHAO,Lin LI,Yansong GUO,Chengyuan SUN,Xichao WEN,Kebin ZHENG,Yanfang SHI. Research progress of CD73/NT5E in glioblastoma [J]. The Journal of Practical Medicine, 2024, 40(3): 428-431. |
[2] | Zhaochen SUN,Junyan JIANG,Yitian. CHEN. Advancements in CAR⁃T cell research for the treatment of colorectal cancer [J]. The Journal of Practical Medicine, 2024, 40(18): 2640-2646. |
[3] | Ziqi DING,Qian. ZHANG. Research progress in T cell exhaustion and its relationship with respiratory diseases [J]. The Journal of Practical Medicine, 2024, 40(13): 1895-1900. |
[4] | Yawei ZHANG,Hongjin SHI,Shi FU,Jiansong WANG,Haifeng WANG. Research progress in biological role of TIGIT and its application in bladder cancer [J]. The Journal of Practical Medicine, 2024, 40(12): 1762-1766. |
[5] | WU Kaiyi, LÜ Xuedong, HE Haiyan, CHEN Jinliang. . Progress in the application of cryoablation combined with immunotherapy in the treatment of NSCLC [J]. The Journal of Practical Medicine, 2023, 39(8): 1058-1062. |
[6] | ZHANG Xijie, LI Xin, ZHOU Wence.. Research progress of combined immunotherapy for metastatic pancreas cancer [J]. The Journal of Practical Medicine, 2023, 39(6): 655-659. |
[7] |
CHEN Fukun, LV Juan, DENG Zhiyong.
Effect of chimeric antigen receptor gene⁃modified T⁃cell immunotherapy for lung cancer:A systematic review
[J]. The Journal of Practical Medicine, 2023, 39(5): 538-543.
|
[8] |
WU Yang, LU Hanjie, SHUI Huifeng..
The efficacy and safety of anlotinib plus PD⁃1 blockades in patients with advanced non⁃small cell lung can⁃ cer previously treated with immunotherapy [J]. The Journal of Practical Medicine, 2023, 39(5): 572-578. |
[9] | Xianlan ZHANG,Yufei ZHU,Yunyun ZENG,Zhihao HUANG,Wenchang CEN,Shan. SU. Efficacy and safety of chemotherapy plus immunotherapy and recombinant human endostatin in treating advanced non-small cell lung cancer [J]. The Journal of Practical Medicine, 2023, 39(16): 2112-2115. |
[10] |
TIAN Jing, ZHANG Zhiyong, BAI Tiankai, YAN Bin..
CAR ⁃T therapy for pancreatic cancer:Research progress and prospects [J]. The Journal of Practical Medicine, 2022, 38(4): 516-521. |
[11] |
XU Lu, HUANG Liyou, WANG Yanhua, WEN Linchun..
Efficacy and safety ofPD ⁃ 1 inhibitor combined with brain radiotherapy for brain metastases in patients with pan⁃negative non⁃small cell lung cancer [J]. The Journal of Practical Medicine, 2022, 38(24): 3100-3105. |
[12] |
PENG Sijing, LU Jielun, WANG Zicheng, ZENG Xiaozhen, ZOU Yawei..
A progress on immunotherapy for childhood acute lymphoblastic leukemia [J]. The Journal of Practical Medicine, 2022, 38(23): 2903-2907. |
[13] | SHI Fujun. Research progresses of breast cancer vaccines for breast cancer [J]. The Journal of Practical Medicine, 2022, 38(20): 2505-2509. |
[14] |
ZHANG Ying, WU Yueling..
Immunotherapy incervical cancer:The advent of precision medicine [J]. The Journal of Practical Medicine, 2022, 38(15): 1856-1859. |
[15] |
HE Jun, WU Songbai, LYU Ailian, DAI Yao, HUANG Kang, FANG Xiang, LYU Jianlei, LIU Min, ZHANG Quan, PENG Jing.
Research on strategy of immunotherapy in elderly sepsis patients with immunosuppression [J]. The Journal of Practical Medicine, 2021, 37(6): 718-721. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||