The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (13): 1895-1900.doi: 10.3969/j.issn.1006-5725.2024.13.023
• Reviews • Previous Articles
Received:
2023-12-28
Online:
2024-07-10
Published:
2024-07-09
Contact:
Qian. ZHANG
E-mail:qianzhang@njmu.edu.cn
CLC Number:
Ziqi DING,Qian. ZHANG. Research progress in T cell exhaustion and its relationship with respiratory diseases[J]. The Journal of Practical Medicine, 2024, 40(13): 1895-1900.
1 |
GALLIMORE A, GLITHERO A, GODKIN A, et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes[J]. J Exp Med, 1998,187(9):1383-1393. doi:10.1084/jem.187.9.1383
doi: 10.1084/jem.187.9.1383 |
2 |
SHIN M S, PARK H J, YOUNG J, et al. Implication of IL-7 receptor alpha chain expression by CD8+ T cells and its signature in defining biomarkers in aging[J]. Immun Ageing, 2022,19(1):1-8. doi:10.1186/s12979-022-00324-6
doi: 10.1186/s12979-022-00324-6 |
3 |
WHERRY E J. T cell exhaustion[J]. Nat Immunol, 2011, 12(6):492-499. doi:10.1038/ni.2035
doi: 10.1038/ni.2035 |
4 |
LENG A, SHAH M, AHMAD S A, et al. Pathogenesis underlying neurological manifestations of long COVID syndrome and potential therapeutics[J]. Cells, 2023,12(5):816. doi:10.3390/cells12050816
doi: 10.3390/cells12050816 |
5 |
OSUCH S, LASKUS T, PERLEJEWSKI K, et al. CD8+ T-cell exhaustion phenotype in chronic hepatitis c virus infection is associated with epitope sequence variation[J]. Front Immunol, 2022,13:903. doi:10.3389/fimmu.2022.832206
doi: 10.3389/fimmu.2022.832206 |
6 |
MISHRA K, SINGH M, SARASWAT D, et al. Dysfunctional state of T cells or exhaustion during chronic viral infections and COVID-19: A review[J]. Viral Immunol, 2022,35(4):284-290. doi:10.1089/vim.2022.0002
doi: 10.1089/vim.2022.0002 |
7 |
GAO Z, FENG Y, XU J, et al. T-cell exhaustion in immune-mediated inflammatory diseases: New implications for immunotherapy[J]. Front Immunol, 2022,13:977394. doi:10.3389/fimmu.2022.977394
doi: 10.3389/fimmu.2022.977394 |
8 |
DOLINA J S, BRAECKEL-BUDIMIR N V, THOMAS G D, et al. CD8+ T cell exhaustion in cancer[J]. Front Immunol, 2021,12:715234. doi:10.3389/fimmu.2021.715234
doi: 10.3389/fimmu.2021.715234 |
9 | BARNOVA M, BOBCAKOVA A, URDOVA V, et al. Inhibitory immune checkpoint molecules and exhaustion of T cells in COVID-19[J]. Physiol Res, 2021,70(S2):S227-S247. |
10 |
QUIGLEY M, PEREYRA F, NILSSON B, et al.Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF[J]. Nat Med,2010,16(10):1147-1151. doi:10.1038/nm.2232
doi: 10.1038/nm.2232 |
11 | HAN Y, LIU D, LI L. PD-1/PD-L1 pathway: current researches in cancer[J]. Am J Cancer Res, 2020,10(3):727-742. |
12 |
BROOKS D G, TRIFILO M J, EDELMANN K H, et al. Interleukin-10 determines viral clearance or persistence in vivo[J]. Nat Med, 2006,12(11):1301-1309. doi:10.1038/nm1492
doi: 10.1038/nm1492 |
13 |
HASHIMOTO M, ARAKI K, CARDENAS M A, et al. PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program[J]. Nature, 2022,610(7930):173-181. doi:10.1038/s41586-022-05257-0
doi: 10.1038/s41586-022-05257-0 |
14 |
HU Y, HUDSON W H, KISSICK H T, et al. TGF-beta regulates the stem-like state of PD-1+ TCF-1+ virus-specific CD8 T cells during chronic infection[J]. J Exp Med, 2022,219(10) :e20211574. doi:10.1084/jem.20211574
doi: 10.1084/jem.20211574 |
15 |
ELSAESSER H, SAUER K, BROOKS D G. IL-21 is required to control chronic viral infection[J]. Science, 2009, 324(5934):1569-1572. doi:10.1126/science.1174182
doi: 10.1126/science.1174182 |
16 |
CUI C, WANG J, FAGERBERG E, et al. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses[J]. Cell,2021,184(25):6101-6118. doi:10.1016/j.cell.2021.11.007
doi: 10.1016/j.cell.2021.11.007 |
17 |
REN H M, LUKACHER A E, RAHMAN Z S M, et al. New developments implicating IL-21 in autoimmune disease[J]. J Autoimmun,2021,122:102689. doi:10.1016/j.jaut.2021.102689
doi: 10.1016/j.jaut.2021.102689 |
18 |
ELAHI S, SHAHBAZ S, HOUSTON S. Selective upregulation of CTLA-4 on CD8+ T cells restricted by HLA-B* 35Px renders them to an exhausted phenotype in HIV-1 infection[J]. PLoS Pathog, 2020,16(8):e1008696. doi:10.1371/journal.ppat.1008696
doi: 10.1371/journal.ppat.1008696 |
19 |
OYEWOLE-SAID D, KONDURI V, VAZQUEZ-PEREZ J, et al. Beyond T-cells: functional characterization of CTLA-4 expression in immune and non-immune cell types[J]. Front Immunol, 2020,11:608024. doi:10.3389/fimmu.2020.608024
doi: 10.3389/fimmu.2020.608024 |
20 |
CHOCARRO L, BLANCO E, ZUAZO M, et al. Understanding LAG-3 signaling[J]. Int J Mol Sci, 2021,22(10):5282. doi:10.3390/ijms22105282
doi: 10.3390/ijms22105282 |
21 |
HAN J, WAN M, MA Z, et al. The TOX subfamily: all-round players in the immune system[J]. Clin Exp Immunol, 2022,208(3):268-280. doi:10.1093/cei/uxac037
doi: 10.1093/cei/uxac037 |
22 |
SEN D R, KAMINSKI J, BARNITZ R A, et al. The epigenetic landscape of T cell exhaustion[J]. Science, 2016, 354(6316):1165-1169. doi:10.1126/science.aae0491
doi: 10.1126/science.aae0491 |
23 | 刘勋. 结核抗原持续刺激致T细胞耗竭实验研究及亚单位疫苗LT70-DPC的研发[D]. 兰州:兰州大学, 2016. |
24 |
PHILLIPS B L, MEHRA S, AHSAN M H, et al. LAG3 expression in active mycobacterium tuberculosis infections[J]. Am J Pathol, 2015,185(3):820-833. doi:10.1016/j.ajpath.2014.11.003
doi: 10.1016/j.ajpath.2014.11.003 |
25 |
SHEN L, GAO Y, LIU Y, et al. PD-1/PD-L pathway inhibits M.tb-specific CD4+ T-cell functions and phagocytosis of macrophages in active tuberculosis[J]. Sci Rep, 2016,6:38362. doi:10.1038/srep38362
doi: 10.1038/srep38362 |
26 |
JAYARAMAN P, JACQUES M K, ZHU C, et al. TIM3 mediates T cell exhaustion during mycobacterium tuberculosis infection[J]. PLoS Pathog, 2016,12(3):e1005490. doi:10.1371/journal.ppat.1005490
doi: 10.1371/journal.ppat.1005490 |
27 |
LOMBARDI A, VILLA S, CASTELLI V, et al. T-Cell Exhaustion in Mycobacterium tuberculosis and Nontuberculous Mycobacteria Infection: Pathophysiology and Therapeutic Perspectives[J]. Microorganisms, 2021,9(12):2460. doi:10.3390/microorganisms9122460
doi: 10.3390/microorganisms9122460 |
28 |
LIU X, LI F, NIU H, et al. IL-2 Restores T-Cell Dysfunction Induced by Persistent Mycobacterium tuberculosis Antigen Stimulation[J]. Front Immunol, 2019, 10:2350. doi:10.3389/fimmu.2019.02350
doi: 10.3389/fimmu.2019.02350 |
29 |
RHA M S, SHIN E C. Activation or exhaustion of CD8+ T cells in patients with COVID-19[J]. Cell Mol Immunol, 2021,18(10):2325-2333. doi:10.1038/s41423-021-00750-4
doi: 10.1038/s41423-021-00750-4 |
30 |
LIU L, WANG A, LIU X, et al. Blocking TIGIT/CD155 signalling reverses CD8+ T cell exhaustion and enhances the antitumor activity in cervical cancer[J]. J Transl Med, 2022,20(1):1-13. doi:10.1186/s12967-022-03480-x
doi: 10.1186/s12967-022-03480-x |
31 |
SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023,73(1):17-48. doi:10.3322/caac.21763
doi: 10.3322/caac.21763 |
32 |
DUTTA S, GANGULY A, CHATTERJEE K, et al. Targets of immune escape mechanisms in cancer: basis for development and evolution of cancer immune checkpoint inhibitors[J]. Biology (Basel), 2023,12(2):218. doi:10.3390/biology12020218
doi: 10.3390/biology12020218 |
33 |
CHI X, LUO S, YE P, et al. T-cell exhaustion and stemness in antitumor immunity: characteristics, mechanisms, and implications[J]. Front Immunol, 2023,14:1104771. doi:10.3389/fimmu.2023.1104771
doi: 10.3389/fimmu.2023.1104771 |
34 |
CHU X, TIAN W, WANG Z, et al. Co-inhibition of TIGIT and PD-1/PD-L1 in cancer immunotherapy: mechanisms and clinical trials[J]. Mol Cancer, 2023,22(1):1-31. doi:10.1186/s12943-023-01800-3
doi: 10.1186/s12943-023-01800-3 |
35 |
SU Y, YAMAZAKI S, MORISUE R, et al. Tumor-infiltrating T cells concurrently overexpress CD200R with immune checkpoints PD-1, CTLA-4, and TIM-3 in non-small-cell lung cancer[J]. Pathobiology, 2021,88(3):218-227. doi:10.1159/000511557
doi: 10.1159/000511557 |
36 | 武阳,陆翰杰,水会锋. 既往免疫经治的晚期非小细胞肺癌患者接受安罗替尼联合PD⁃1单抗的疗效及安全性[J]. 实用医学杂志, 2023,39(5):572-578. |
37 |
ITAHASHI K, IRIE T, YUDA J, et al. BATF epigenetically and transcriptionally controls the activation program of regulatory T cells in human tumors[J]. Sci Immunol, 2022,7(76):eabk0957. doi:10.1126/sciimmunol.abk0957
doi: 10.1126/sciimmunol.abk0957 |
38 |
ZHANG Z, LIN M, WANG J, et al. Calycosin inhibits breast cancer cell migration and invasion by suppressing EMT via BATF/TGF-β1[J]. Aging (Albany NY), 2021,13(12):16009-16023. doi:10.18632/aging.203093
doi: 10.18632/aging.203093 |
39 |
ZHANG X, ZHANG C, QIAO M, et al. Depletion of BATF in CAR-T cells enhances antitumor activity by inducing resistance against exhaustion and formation of central memory cells[J]. Cancer Cell, 2022,40(11):1407-1422. doi:10.1016/j.ccell.2022.09.013
doi: 10.1016/j.ccell.2022.09.013 |
40 |
TREFNY M P, KIRCHHAMMER N, DER MAUR P AUF, et al. Deletion of SNX9 alleviates CD8 T cell exhaustion for effective cellular cancer immunotherapy[J]. Nat Commun, 2023,14(1):86. doi:10.1038/s41467-022-35583-w
doi: 10.1038/s41467-022-35583-w |
41 |
ZHANG H, LIU S, LI Y, et al. Dysfunction of S100A4+ effector memory CD8+ T cells aggravates asthma[J]. Eur J Immunol,2022,52(6):978-993. doi:10.1002/eji.202149572
doi: 10.1002/eji.202149572 |
42 |
DIEHL S, KRAHL T, RINALDI L, et al. Inhibition of NFAT specifically in T cells prevents allergic pulmonary inflammation[J]. J Immunol, 2004,172(6):3597-3603. doi:10.4049/jimmunol.172.6.3597
doi: 10.4049/jimmunol.172.6.3597 |
43 |
LIN M, HUANG Z, CHEN Y, et al. Lung cancer patients with chronic obstructive pulmonary disease benefit from anti-PD-1/PD-L1 therapy[J]. Front Immunol, 2022,13:1038715. doi:10.3389/fimmu.2022.1038715
doi: 10.3389/fimmu.2022.1038715 |
[1] | Jiang SHAO,Lin LI,Yansong GUO,Chengyuan SUN,Xichao WEN,Kebin ZHENG,Yanfang SHI. Research progress of CD73/NT5E in glioblastoma [J]. The Journal of Practical Medicine, 2024, 40(3): 428-431. |
[2] | Zhaochen SUN,Junyan JIANG,Yitian. CHEN. Advancements in CAR⁃T cell research for the treatment of colorectal cancer [J]. The Journal of Practical Medicine, 2024, 40(18): 2640-2646. |
[3] | Yawei ZHANG,Hongjin SHI,Shi FU,Jiansong WANG,Haifeng WANG. Research progress in biological role of TIGIT and its application in bladder cancer [J]. The Journal of Practical Medicine, 2024, 40(12): 1762-1766. |
[4] | Xizhi WEN,Xiaoshi. ZHANG. Immunotherapy based on neoantigen: A personalized treatment strategy for melanoma [J]. The Journal of Practical Medicine, 2024, 40(10): 1331-1337. |
[5] | WU Kaiyi, LÜ Xuedong, HE Haiyan, CHEN Jinliang. . Progress in the application of cryoablation combined with immunotherapy in the treatment of NSCLC [J]. The Journal of Practical Medicine, 2023, 39(8): 1058-1062. |
[6] | ZHANG Xijie, LI Xin, ZHOU Wence.. Research progress of combined immunotherapy for metastatic pancreas cancer [J]. The Journal of Practical Medicine, 2023, 39(6): 655-659. |
[7] |
CHEN Fukun, LV Juan, DENG Zhiyong.
Effect of chimeric antigen receptor gene⁃modified T⁃cell immunotherapy for lung cancer:A systematic review
[J]. The Journal of Practical Medicine, 2023, 39(5): 538-543.
|
[8] |
WU Yang, LU Hanjie, SHUI Huifeng..
The efficacy and safety of anlotinib plus PD⁃1 blockades in patients with advanced non⁃small cell lung can⁃ cer previously treated with immunotherapy [J]. The Journal of Practical Medicine, 2023, 39(5): 572-578. |
[9] | Xianlan ZHANG,Yufei ZHU,Yunyun ZENG,Zhihao HUANG,Wenchang CEN,Shan. SU. Efficacy and safety of chemotherapy plus immunotherapy and recombinant human endostatin in treating advanced non-small cell lung cancer [J]. The Journal of Practical Medicine, 2023, 39(16): 2112-2115. |
[10] |
TIAN Jing, ZHANG Zhiyong, BAI Tiankai, YAN Bin..
CAR ⁃T therapy for pancreatic cancer:Research progress and prospects [J]. The Journal of Practical Medicine, 2022, 38(4): 516-521. |
[11] |
XU Lu, HUANG Liyou, WANG Yanhua, WEN Linchun..
Efficacy and safety ofPD ⁃ 1 inhibitor combined with brain radiotherapy for brain metastases in patients with pan⁃negative non⁃small cell lung cancer [J]. The Journal of Practical Medicine, 2022, 38(24): 3100-3105. |
[12] |
PENG Sijing, LU Jielun, WANG Zicheng, ZENG Xiaozhen, ZOU Yawei..
A progress on immunotherapy for childhood acute lymphoblastic leukemia [J]. The Journal of Practical Medicine, 2022, 38(23): 2903-2907. |
[13] |
ZHANG Ying, WU Yueling..
Immunotherapy incervical cancer:The advent of precision medicine [J]. The Journal of Practical Medicine, 2022, 38(15): 1856-1859. |
[14] |
HE Jun, WU Songbai, LYU Ailian, DAI Yao, HUANG Kang, FANG Xiang, LYU Jianlei, LIU Min, ZHANG Quan, PENG Jing.
Research on strategy of immunotherapy in elderly sepsis patients with immunosuppression [J]. The Journal of Practical Medicine, 2021, 37(6): 718-721. |
[15] |
LI Dailong, WANG Yuke, PANG Yaqi, XU Xinhua.
Progress of clinical research on immune checkpoint inhibitorsin advanced hepatocellular carcinoma [J]. The Journal of Practical Medicine, 2021, 37(6): 821-826. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||