The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (3): 428-431.doi: 10.3969/j.issn.1006-5725.2024.03.026
• Reviews • Previous Articles Next Articles
Jiang SHAO,Lin LI,Yansong GUO,Chengyuan SUN,Xichao WEN,Kebin ZHENG,Yanfang SHI()
Received:
2023-09-19
Online:
2024-02-10
Published:
2024-02-22
Contact:
Yanfang SHI
E-mail:Yakamoz47@126.com
CLC Number:
Jiang SHAO,Lin LI,Yansong GUO,Chengyuan SUN,Xichao WEN,Kebin ZHENG,Yanfang SHI. Research progress of CD73/NT5E in glioblastoma[J]. The Journal of Practical Medicine, 2024, 40(3): 428-431.
1 |
PARK J W. Metabolic Rewiring in Adult-Type Diffuse Gliomas[J]. Int J Mol Sci, 2023,24(8): 7348. doi:10.3390/ijms24087348
doi: 10.3390/ijms24087348 |
2 |
曾昭穆,牛双,姬焱鑫,等. 长链非编码RNA多角度调控胶质瘤化疗耐药[J]. 实用医学杂志,2022,38(16):1998-2001. doi:10.3969/j.issn.1006-5725.2022.16.003
doi: 10.3969/j.issn.1006-5725.2022.16.003 |
3 |
李琳, 刘超, 邵将, 等. 肿瘤电场治疗在神经胶质瘤治疗中的研究进展[J]. 实用医学杂志, 2022,38(22): 2763-2767. doi:10.3969/j.issn.1006-5725.2022.22.001
doi: 10.3969/j.issn.1006-5725.2022.22.001 |
4 |
VENKATESHAPPA C, NARAYANAN K, KOTHANDARAMAN P, et al. Novel, potent and orally bioavailable small molecule CD73 inhibitors for cancer immunotherapy[J]. Cancer Res, 2021,81(): 1713. doi:10.1158/1538-7445.am2021-1713
doi: 10.1158/1538-7445.am2021-1713 |
5 |
KEPP O, BEZU L, YAMAZAKI T, et al. ATP and cancer immunosurveillance[J]. EMBO J, 2021,40(13): e108130. doi:10.15252/embj.2021108130
doi: 10.15252/embj.2021108130 |
6 |
SUWARA J, RADZIKOWSKA-CIECIURA E, CHWOROS A, et al. The ATP-dependent Pathways and Human Diseases[J]. Curr Med Chem, 2023,30(11): 1232-1255. doi:10.2174/0929867329666220322104552
doi: 10.2174/0929867329666220322104552 |
7 |
XIA C, YIN S, TO K, et al. CD39/CD73/A2AR pathway and cancer immunotherapy[J]. Mol Cancer, 2023,22(1): 44. doi:10.1186/s12943-023-01733-x
doi: 10.1186/s12943-023-01733-x |
8 |
TAKAMATSU D, KIYOZAWA D, KOHASHI K, et al. Prognostic impact of CD73/adenosine 2A receptor (A2AR) in renal cell carcinoma and immune microenvironmental status with sarcomatoid changes and rhabdoid features[J]. Pathol Res Pract, 2023,244: 154423. doi:10.1016/j.prp.2023.154423
doi: 10.1016/j.prp.2023.154423 |
9 |
DA M, CHEN L, ENK A, et al. The Multifaceted Actions of CD73 During Development and Suppressive Actions of Regulatory T Cells[J]. Front Immunol, 2022,13: 914799. doi:10.3389/fimmu.2022.914799
doi: 10.3389/fimmu.2022.914799 |
10 |
CHEN S, WAINWRIGHT D A, WU J D, et al. CD73: an emerging checkpoint for cancer immunotherapy[J]. Immunotherapy, 2019,11(11): 983-997. doi:10.2217/imt-2018-0200
doi: 10.2217/imt-2018-0200 |
11 |
SUN B Y, YANG Z F, WANG Z T, et al. Integrative analyses identify CD73 as a prognostic biomarker and immunotherapeutic target in intrahepatic cholangiocarcinoma[J]. World J Surg Oncol, 2023,21(1): 90. doi:10.1186/s12957-023-02970-6
doi: 10.1186/s12957-023-02970-6 |
12 |
BENSUSSEN A, SANTANA M A, RODRÍGUEZ-JORGE O. Metabolic alterations impair differentiation and effector functions of CD8+ T cells[J]. Front Immunol, 2022,13: 945980. doi:10.3389/fimmu.2022.945980
doi: 10.3389/fimmu.2022.945980 |
13 |
BYSTROM J, TAHER T E, HENSON S M, et al. Metabolic requirements of Th17 cells and of B cells: Regulation and defects in health and in inflammatory diseases[J]. Front Immunol, 2022,13: 990794. doi:10.3389/fimmu.2022.990794
doi: 10.3389/fimmu.2022.990794 |
14 |
MAHESHWARI S, DWYER L J, SÎRBULESCU R F. Inflammation and immunomodulation in central nervous system injury - B cells as a novel therapeutic opportunity[J]. Neurobiol Dis, 2023,180: 106077. doi:10.1016/j.nbd.2023.106077
doi: 10.1016/j.nbd.2023.106077 |
15 |
JANSEN K, CEVHERTAS L, MA S, et al. Regulatory B cells, A to Z[J]. Allergy, 2021,76(9): 2699-2715. doi:10.1111/all.14763
doi: 10.1111/all.14763 |
16 |
GAO Z, WANG L, SONG Z, et al. Intratumoral CD73: An immune checkpoint shaping an inhibitory tumor microenvironment and implicating poor prognosis in Chinese melanoma cohorts[J]. Front Immunol, 2022,13: 954039. doi:10.3389/fimmu.2022.954039
doi: 10.3389/fimmu.2022.954039 |
17 |
BRAUNECK F, SEUBERT E, WELLBROCK J, et al. Combined Blockade of TIGIT and CD39 or A2AR Enhances NK-92 Cell-Mediated Cytotoxicity in AML[J]. Int J Mol Sci, 2021,22(23):12919. doi:10.3390/ijms222312919
doi: 10.3390/ijms222312919 |
18 |
SONIGO G, BOZONNAT A, DUMONT M, et al. Involvement of the CD39/CD73/adenosine pathway in T-cell proliferation and NK cell-mediated antibody-dependent cell cytotoxicity in Sézary syndrome[J]. Blood, 2022,139(17): 2712-2716. doi:10.1182/blood.2021014782
doi: 10.1182/blood.2021014782 |
19 |
KAMAI T, KIJIMA T, TSUZUKI T, et al. Increased expression of adenosine 2A receptors in metastatic renal cell carcinoma is associated with poorer response to anti-vascular endothelial growth factor agents and anti-PD-1/Anti-CTLA4 antibodies and shorter survival[J]. Cancer Immunol Immunother, 2021,70(7): 2009-2021. doi:10.1007/s00262-020-02843-x
doi: 10.1007/s00262-020-02843-x |
20 |
SUN P, ZHENG X, LI X. The Effects of CD73 on Gastrointestinal Cancer Progression and Treatment[J]. J Oncol, 2022,2022: 4330329. doi:10.1155/2022/4330329
doi: 10.1155/2022/4330329 |
21 |
EBERHARDT N, BERGERO G, MAZZOCCO M Y, et al. Purinergic modulation of the immune response to infections[J]. Purinergic Signal, 2022,18(1): 93-113. doi:10.1007/s11302-021-09838-y
doi: 10.1007/s11302-021-09838-y |
22 |
ELSAGHIR A, EL-SABAA E, AHMED A K, et al. The Role of Cluster of Differentiation 39 (CD39) and Purinergic Signaling Pathway in Viral Infections[J]. Pathogens, 2023,12(2):279. doi:10.3390/pathogens12020279
doi: 10.3390/pathogens12020279 |
23 |
CASEY M, SEGAWA K, LAW S C, et al. Inhibition of CD39 unleashes macrophage antibody-dependent cellular phagocytosis against B-cell lymphoma[J]. Leukemia, 2023,37(2): 379-387. doi:10.1038/s41375-022-01794-9
doi: 10.1038/s41375-022-01794-9 |
24 |
IZAWA M, TANAKA N, MURAKAMI T, et al. Single-Cell Phenotyping of CD73 Expression Reveals the Diversity of the Tumor Immune Microenvironment and Reflects the Prognosis of Bladder Cancer[J]. Lab Invest, 2023,103(4): 100040. doi:10.1016/j.labinv.2022.100040
doi: 10.1016/j.labinv.2022.100040 |
25 |
BAJRACHARYA B, SHRESTHA D, TALVANI A, et al. The Ecto-5'nucleotidase/CD73 Mediates Leishmania amazonensis Survival in Macrophages[J]. Biomed Res Int, 2022,2022: 9928362. doi:10.1155/2022/9928362
doi: 10.1155/2022/9928362 |
26 |
ANDERSEN J K, MILETIC H, HOSSAIN J A. Tumor-Associated Macrophages in Gliomas-Basic Insights and Treatment Opportunities[J]. Cancers (Basel), 2022,14(5):1319. doi:10.3390/cancers14051319
doi: 10.3390/cancers14051319 |
27 |
WEI Q, ZHANG L, ZHAO N, et al. Immunosuppressive adenosine-targeted biomaterials for emerging cancer immunotherapy[J]. Front Immunol, 2022,13: 1012927. doi:10.3389/fimmu.2022.1012927
doi: 10.3389/fimmu.2022.1012927 |
28 |
NIE J, WANG D, LI M. The crosstalk between autophagy and myeloid-derived suppressor cell responses in cancer[J]. Clin Transl Oncol, 2023,25(10): 2832-2840. doi:10.1007/s12094-023-03160-2
doi: 10.1007/s12094-023-03160-2 |
29 |
KOWASH R R, AKBAY E A. Tumor intrinsic and extrinsic functions of CD73 and the adenosine pathway in lung cancer[J]. Front Immunol, 2023,14: 1130358. doi:10.3389/fimmu.2023.1130358
doi: 10.3389/fimmu.2023.1130358 |
30 |
LI L, WANG L, LI J, et al. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer[J]. Cancer Res, 2018,78(7): 1779-1791. doi:10.1158/0008-5472.can-17-2460
doi: 10.1158/0008-5472.can-17-2460 |
31 |
KIM H M, KANG M J, SONG S O. Metformin and Cervical Cancer Risk in Patients with Newly Diagnosed Type 2 Diabetes: A Population-Based Study in Korea[J]. Endocrinol Metab (Seoul), 2022,37(6): 929-937. doi:10.3803/enm.2022.1613
doi: 10.3803/enm.2022.1613 |
32 |
WANG M, JIA J, CUI Y, et al. CD73-positive extracellular vesicles promote glioblastoma immunosuppression by inhibiting T-cell clonal expansion[J]. Cell Death Dis, 2021,12(11): 1065. doi:10.1038/s41419-021-04359-3
doi: 10.1038/s41419-021-04359-3 |
33 |
AZAMBUJA J H, GELSLEICHTER N E, BECKENKAMP L R, et al. CD73 Downregulation Decreases In Vitro and In Vivo Glioblastoma Growth[J]. Mol Neurobiol, 2019,56(5): 3260-3279. doi:10.1007/s12035-018-1240-4
doi: 10.1007/s12035-018-1240-4 |
34 |
GELSLEICHTER N E, AZAMBUJA J H, RUBENICH D S, et al. CD73 in glioblastoma: Where are we now and what are the future directions?[J]. Immunol Lett, 2023,256-257: 20-27. doi:10.1016/j.imlet.2023.03.005
doi: 10.1016/j.imlet.2023.03.005 |
35 |
AZAMBUJA J H, SCHUH R S, MICHELS L R, et al. Blockade of CD73 delays glioblastoma growth by modulating the immune environment[J]. Cancer Immunol Immunother, 2020,69(9): 1801-1812. doi:10.1007/s00262-020-02569-w
doi: 10.1007/s00262-020-02569-w |
36 |
TSIAMPALI J, NEUMANN S, GIESEN B, et al. Enzymatic activity of CD73 modulates invasion of gliomas via epithelial-mesenchymal transition-like reprogramming[J]. Pharmaceuticals (Basel), 2020,13(11): 378. doi:10.3390/ph13110378
doi: 10.3390/ph13110378 |
37 |
ZHANG S, LI B, TANG L, et al. Disruption of CD73-Derived and Equilibrative Nucleoside Transporter 1-Mediated Adenosine Signaling Exacerbates Oxygen-Induced Retinopathy[J]. Am J Pathol, 2022,192(11): 1633-1646. doi:10.1016/j.ajpath.2022.07.014
doi: 10.1016/j.ajpath.2022.07.014 |
38 |
YAN A, JOACHIMS M L, THOMPSON L F, et al. CD73 promotes glioblastoma pathogenesis and enhances its chemoresistance via A2B adenosine receptor signaling[J]. J Neurosci, 2019,39(22): 4387-4402. doi:10.1523/jneurosci.1118-18.2019
doi: 10.1523/jneurosci.1118-18.2019 |
39 |
GOSWAMI S, WALLE T, CORNISH A E, et al. Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma[J]. Nat Med, 2020,26(1): 39-46. doi:10.1038/s41591-019-0694-x
doi: 10.1038/s41591-019-0694-x |
40 |
AZAMBUJA J H, SCHUH R S, MICHELS L R, et al. CD73 as a target to improve temozolomide chemotherapy effect in glioblastoma preclinical model[J]. Cancer Chemother Pharmacol, 2020,85(6): 1177-1182. doi:10.1007/s00280-020-04077-1
doi: 10.1007/s00280-020-04077-1 |
41 |
SAHA D, MARTUZA R L, RABKIN S D. Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade[J]. Cancer Cell, 2017,32(2): 253-267. doi:10.1016/j.ccell.2017.07.006
doi: 10.1016/j.ccell.2017.07.006 |
42 |
LI L, TIAN Y. The role of metabolic reprogramming of tumor-associated macrophages in shaping the immunosuppressive tumor microenvironment[J]. Biomed Pharmacother, 2023,161: 114504. doi:10.1016/j.biopha.2023.114504
doi: 10.1016/j.biopha.2023.114504 |
[1] | Yuxuan DING,Lining GUO,Jiayi SHEN,Lijun. WANG. Safety and efficacy of radiotherapy and PD⁃1/PD⁃L1 inhibitor + TKI for MSS/pMMR colorectal cancer with liver metastases [J]. The Journal of Practical Medicine, 2024, 40(9): 1293-1297. |
[2] | Xiaona MENG,Xu SUN,Huaimin LIU. Advances in the study of immune checkpoint inhibitors⁃related colitis [J]. The Journal of Practical Medicine, 2024, 40(9): 1314-1319. |
[3] | Yuqiao ZHANG,Weijian MEI. Landmark Achievements in Treating Solid Tumors with Immune Checkpoint Inhibitors [J]. The Journal of Practical Medicine, 2024, 40(2): 272-277. |
[4] | Zhaochen SUN,Junyan JIANG,Yitian. CHEN. Advancements in CAR⁃T cell research for the treatment of colorectal cancer [J]. The Journal of Practical Medicine, 2024, 40(18): 2640-2646. |
[5] | Shengfang YUAN,Bu WANG,Baoli XIANG,Jianqing ZHAO,Jingjing SHEN,Zhihua. ZHANG. Prediction of immune therapy efficacy and prognosis for advanced non-small cell lung cancer using peripheral blood circulation tumor DNA [J]. The Journal of Practical Medicine, 2024, 40(15): 2110-2115. |
[6] | Ziqi DING,Qian. ZHANG. Research progress in T cell exhaustion and its relationship with respiratory diseases [J]. The Journal of Practical Medicine, 2024, 40(13): 1895-1900. |
[7] | Liu LI,Qinghou ZHENG,Yu WANG,Le WANG,Qincong CHEN,Shuo WANG. Application value of adenosine injection in paclitaxel release coronary balloon catheter dilation [J]. The Journal of Practical Medicine, 2024, 40(12): 1712-1718. |
[8] | Yawei ZHANG,Hongjin SHI,Shi FU,Jiansong WANG,Haifeng WANG. Research progress in biological role of TIGIT and its application in bladder cancer [J]. The Journal of Practical Medicine, 2024, 40(12): 1762-1766. |
[9] | Huinan ZHOU,Kewei QIN,Lijun. ZHOU. Current research status and clinical application progress of the immune checkpoint LAG⁃3 and its targeting drugs [J]. The Journal of Practical Medicine, 2024, 40(11): 1607-1612. |
[10] | Xizhi WEN,Xiaoshi. ZHANG. Immunotherapy based on neoantigen: A personalized treatment strategy for melanoma [J]. The Journal of Practical Medicine, 2024, 40(10): 1331-1337. |
[11] | WU Kaiyi, LÜ Xuedong, HE Haiyan, CHEN Jinliang. . Progress in the application of cryoablation combined with immunotherapy in the treatment of NSCLC [J]. The Journal of Practical Medicine, 2023, 39(8): 1058-1062. |
[12] | ZHANG Xijie, LI Xin, ZHOU Wence.. Research progress of combined immunotherapy for metastatic pancreas cancer [J]. The Journal of Practical Medicine, 2023, 39(6): 655-659. |
[13] |
CHEN Fukun, LV Juan, DENG Zhiyong.
Effect of chimeric antigen receptor gene⁃modified T⁃cell immunotherapy for lung cancer:A systematic review
[J]. The Journal of Practical Medicine, 2023, 39(5): 538-543.
|
[14] |
WU Yang, LU Hanjie, SHUI Huifeng..
The efficacy and safety of anlotinib plus PD⁃1 blockades in patients with advanced non⁃small cell lung can⁃ cer previously treated with immunotherapy [J]. The Journal of Practical Medicine, 2023, 39(5): 572-578. |
[15] | Huaming ZHANG,Wanshan HE,Yun HAN,Guanqiao CHEN,Bin CHEN,Zhifu WEI,Hengying WU,Bin. WEN. Screening of gene differential expression of adenosine deaminase RNA specific 1 in cervical cancer cells based on transcriptome sequencing technology [J]. The Journal of Practical Medicine, 2023, 39(24): 3169-3174. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||