The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (17): 2381-2389.doi: 10.3969/j.issn.1006-5725.2024.17.005
• Basic Research • Previous Articles Next Articles
Min LIU1,Xiyun CHEN2(),Jianlei LÜ1,Jie. FENG1
Received:
2024-04-25
Online:
2024-09-10
Published:
2024-09-13
Contact:
Xiyun CHEN
E-mail:chenxiyun1988@126.com
CLC Number:
Min LIU,Xiyun CHEN,Jianlei LÜ,Jie. FENG. ALKBH5 reduce septic-induced myocardial dysfunction by regulating the TRAF1/NF-κB pathway[J]. The Journal of Practical Medicine, 2024, 40(17): 2381-2389.
Tab.1
Comparison of 72 h H9C2 viability of cardiomyocytes by different treatment methods"
时间 | Control | LPS | LPS+sh-NC | LPS+sh-ALKBH5 |
---|---|---|---|---|
0 h | 1.01 ± 0.03 | 1.03 ± 0.14 | 0.98 ± 0.15 | 0.98 ± 0.18 |
24 h | 2.03 ± 0.32 | 1.42 ± 0.28 | 1.35 ± 0.35 | 1.12 ± 0.29 |
48 h | 3.01 ± 0.24 | 2.15 ± 0.25 | 2.23 ± 0.27 | 1.58 ± 0.32 |
72 h | 4.12 ± 0.42 | 3.19 ± 0.31 | 3.35 ± 0.26 | 2.24 ± 0.35 |
t值 | 3.086a | 4.410b | ||
P值 | 0.037a | 0.012b |
Tab.2
Comparison of H9C2 inflammatory factors in cardiomyocytes in different treatment methods (x ± s)/(pg/mL)"
组别 | TNF-α | IL-6 | IL-8 |
---|---|---|---|
Control | 5.67 ± 1.05 | 2.56 ± 1.28 | 2.88 ± 1.35 |
LPS | 20.03 ± 2.09 | 15.95 ± 1.32 | 16.05 ± 2.32 |
t值 | 10.634 | 12.613 | 8.500 |
P值 | < 0.001 | < 0.001 | 0.001 |
LPS+sh-NC | 19.83 ± 2.85 | 15.23 ± 1.45 | 16.55 ± 2.23 |
LPS+sh-ALKBH5 | 28.45 ± 2.07 | 25.98 ± 3.56 | 26.92 ± 3.34 |
t值 | 4.239 | 4.844 | 4.472 |
P值 | 0.013 | 0.008 | 0.011 |
Tab.3
Comparison of cell viability of the different H9C2 cell models"
组别 | Control | LPS | LPS + pcDNA | LPS + pcDNA-TRAF1 | LPS + pcDNA-TRAF1 + sh-NC | LPS + pcDNA-TRAF1 + sh-ALKBH5 | LPS + pcDNA-TRAF1 + NF-κΒ activator 1 |
---|---|---|---|---|---|---|---|
0 h | 1.01 ± 0.02 | 1.03 ± 0.05 | 0.99 ± 0.11 | 0.98 ± 0.12 | 1.03 ± 0.05 | 0.95 ± 0.15 | 1.03 ± 0.05 |
24 h | 2.05 ± 0.28 | 1.45 ± 0.16 | 1.38 ± 0.27 | 1.83 ± 0.34 | 1.85 ± 0.28 | 1.39 ± 0.32 | 1.42 ± 0.24 |
48 h | 3.04 ± 0.22 | 2.14 ± 0.28 | 2.25 ± 0.24 | 2.96 ± 0.23 | 2.84 ± 0.16 | 2.22 ± 0.24 | 2.24 ± 0.21 |
72 h | 4.15 ± 0.32 | 3.15 ± 0.21 | 3.46 ± 0.27 | 4.86 ± 0.25 | 4.89 ± 0.34 | 3.23 ± 0.23 | 3.35 ± 0.14 |
t值 | 4.525a | 6.600b | 8.311e | 0.772d | |||
P值 | 0.011a | 0.003b | 0.001c | > 0.05d |
Tab.4
Comparison of cellular inflammatory cytokines in H9C2 cells in different treatment groups"
分组 | TNF-α | IL-6 | IL-8 |
---|---|---|---|
Control | 5.58 ± 1.08 | 2.66 ± 0.84 | 3.45 ± 1.32 |
LPS | 20.15 ± 2.59 | 16.35 ± 2.28 | 16.25 ± 2.22 |
t值 | 8.993 | 9.759 | 6.305 |
P值 | < 0.001 | < 0.001 | 0.003 |
LPS + pcDNA | 20.83 ± 1.67 | 16.23 ± 1.98 | 16.45 ± 1.23 |
LPS + pcDNA-TRAF1 | 15.46 ± 2.57 | 11.98 ± 1.56 | 11.86 ± 1.52 |
t值 | 3.035 | 2.920 | 4.066 |
P值 | 0.038 | 0.043 | 0.015 |
LPS + pcDNA-TRAF1 + sh-NC | 15.35 ± 1.35 | 11.34 ± 1.54 | 11.45 ± 2.24 |
LPS + pcDNA-TRAF1 + sh-ALKBH5 | 20.42 ± 1.43 | 16.43 ± 1.34 | 16.82 ± 1.83 |
t值 | 2.962 | 3.748 | 3.611 |
P值 | 0.041 | 0.020 | 0.023 |
LPS + pcDNA-TRAF1 + NF-κΒ activator 1 | 21.45 ± 2.67 | 16.34 ± 2.21 | 17.02 ± 2.56 |
t值 | 0.589 | 0.048 | 0.110 |
P值a | > 0.05 | > 0.05 | > 0.05 |
Tab.5
Comparison of inflammatory factors and myocardial injury proteins in different treatments of rats"
组别 | TNF-α | IL-6 | IL-8 | cTnI |
---|---|---|---|---|
Control | 5.58 ± 1.08 | 2.66 ± 0.84 | 3.45 ± 1.32 | 20.54 ± 3.45 |
LPS | 20.15 ± 2.59 | 16.35 ± 2.28 | 16.25 ± 2.25 | 65.43 ± 6.65 |
t值 | 8.993 | 9.766 | 8.499 | 18.877 |
P值 | 0.001 | 0.001 | 0.001 | < 0.001 |
LPS+pcDNA | 20.83 ± 2.67 | 16.23 ± 2.98 | 16.45 ± 3.23 | 64.53 ± 5.65 |
LPS+pcDNA-TRAF1 | 10.46 ± 1.57 | 8.98 ± 1.47 | 8.92 ± 1.52 | 22.56 ± 3.21 |
t值 | 5.799 | 3.779 | 3.653 | 11.187 |
P值 | 0.004 | 0.020 | 0.022 | < 0.001 |
LPS+pcDNA-TRAF1+sh-NC | 9.35 ± 1.35 | 8.34 ± 1.54 | 8.45 ± 1.24 | 23.24 ± 2.84 |
LPS+pcDNA-TRAF1+sh-ALKBH5 | 20.42 ± 2.43 | 16.23 ± 2.34 | 16.82 ± 2.45 | 62.45 ± 7.23 |
t值 | 6.898 | 4.878 | 5.280 | 8.743 |
P值 | 0.002 | 0.008 | 0.006 | 0.001 |
1 |
KOTECHA A, VALLABHAJOSYULA S, COVILLE H H, et al. Cardiorenal syndrome in sepsis: A narrative review[J]. J Crit Care, 2018, 43:122-127. doi:10.1016/j.jcrc.2017.08.044
doi: 10.1016/j.jcrc.2017.08.044 |
2 |
INNOCENTI F, PALMIERI V, GUZZO A, et al. SOFA score and left ventricular systolic function as predictors of short-term outcome in patients with sepsis[J]. Intern Emerg Med, 2018, 13(1): 51-58. doi:10.1007/s11739-016-1579-3
doi: 10.1007/s11739-016-1579-3 |
3 |
L'HEUREUX M, STERNBERG M, BRATH L, et al. Sepsis-Induced Cardiomyopathy: A Comprehensive Review[J]. Curr Cardiol Rep, 2020, 22(5):35. doi:10.1007/s11886-020-01277-2
doi: 10.1007/s11886-020-01277-2 |
4 |
HOLLENBERG S M, SINGER M. Pathophysiology of sepsis-induced cardiomyopathy[J]. Nat Rev Cardiol, 2021, 18(6): 424-434. doi:10.1038/s41569-020-00492-2
doi: 10.1038/s41569-020-00492-2 |
5 |
WANG J Y, WANG J Q, GU Q, et al. The biological function of m6A demethylase ALKBH5 and its role in human disease[J]. Cancer Cell Int, 2020, 20:347. doi:10.1186/s12935-020-01450-1
doi: 10.1186/s12935-020-01450-1 |
6 |
HAN Z B, WANGX X, XU Z H, et al. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1[J]. Theranostics, 2021, 11(6):3000-3016. doi:10.7150/thno.47354
doi: 10.7150/thno.47354 |
7 | 杨帆,武菲菲,苏洁,等. 姜黄素通过AMPK/FUNDC1缓解LPS诱导的心肌细胞损伤[J]. 医学研究杂志,2022,51(19):30-36. |
8 |
陈思聪,张雁斌,马扬杰. 人参皂苷Rg1对脓毒症所致心肌损伤大鼠HMGB1/NF-κB通路的影响[J]. 中国免疫学杂志,2023,39(8):1671-1677. doi:10.3969/j.issn.1000-484X.2023.08.019
doi: 10.3969/j.issn.1000-484X.2023.08.019 |
9 |
敖雪,苏醒,侯宇,等. 基于p38MAPK/NF-κB研究miR-146a干预脓毒性心肌病的分子机制[J]. 实用医学杂志,2023,39(24):3188-3194. doi:10.3969/j.issn.1006-5725.2023.24.007
doi: 10.3969/j.issn.1006-5725.2023.24.007 |
10 |
黄颖,唐立丽,关于琳,等. 脓毒症心肌损伤发病机制及治疗研究进展[J]. 实用医学杂志,2023,39(14):1848-1852. doi:10.3969/j.issn.1006-5725.2023.14.021
doi: 10.3969/j.issn.1006-5725.2023.14.021 |
11 |
ZHANG J, GUO S, PIAO H Y, et al. ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1[J]. J Physiol Biochem, 2019,75(3):379-389. doi:10.1007/s13105-019-00690-8
doi: 10.1007/s13105-019-00690-8 |
12 |
ZHU H T, GAN X L, JIANG X W, et al. ALKBH5 inhibited autophagy of epithelial ovarian cancer through miR-7 and BCL-2[J]. J Exp Clin Cancer Res, 2019, 38(1): 163. doi:10.1186/s13046-019-1159-2
doi: 10.1186/s13046-019-1159-2 |
13 |
ZHANG C Z, SAMANTA D, LU H Q, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m⁶A-demethylation of NANOG mRNA[J]. Proc Natl Acad Sci U S A, 2016, 113 (14): E2047-E2056. doi:10.1073/pnas.1602883113
doi: 10.1073/pnas.1602883113 |
14 |
ZHOU J, ZHANG X, HU J, et al. M6A demethylase ALKBH5 controls CD4+T cell pathogenicity and promotes autoimmunity[J]. Sci Adv, 2021, 7(25):eabg0470. doi:10.1126/sciadv.abg0470
doi: 10.1126/sciadv.abg0470 |
15 |
GAO Y, ZIMMER J T, VASIC R,et al. ALKBH5 modulates hematopoietic stem and progenitor cell energy metabolism through mA modification-mediated RNA stability control[J]. Cell Rep, 2023, 42(10):113163. doi:10.1016/j.celrep.2023.113163
doi: 10.1016/j.celrep.2023.113163 |
16 |
LANDFORS M, NAKKEN S, FUSSER M, et al. Sequencing of FTO and ALKBH5 in men undergoing infertility work-up identifies an infertility-associated variant and two missense mutations[J]. Fertil Steril, 2016, 105(5): 1170-1179.e5. doi:10.1016/j.fertnstert.2016.01.002
doi: 10.1016/j.fertnstert.2016.01.002 |
17 |
YU J J, SHEN L J, LIU Y L, et al. The m6A methyltransferase METTL3 cooperates with demethylase ALKBH5 to regulate osteogenic differentiation through NF-κB signaling[J]. Mol Cell Biochem, 2020, 463(1/2): 203-210. doi:10.1007/s11010-019-03641-5
doi: 10.1007/s11010-019-03641-5 |
18 |
TANG C, KLUKOVICH R, PENG H Y, et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3'-UTR mRNAs in male germ cells[J]. Proc Natl Acad Sci U S A, 2018, 115(2): E325-E333. doi:10.1073/pnas.1717794115
doi: 10.1073/pnas.1717794115 |
19 | 吴春阳. 去甲基化酶ALKBH5依赖m6A修饰调控E2F8/PI3K/AKT信号轴抑制骨肉瘤恶性表型的机制研究[D]. 南昌:南昌大学,2023. |
20 |
LIU Y, SONG R J, ZHAO L, et al. m6A demethylase ALKBH5 is required for antibacterial innate defense by intrinsic motivation of neutrophil migration[J]. Signal Transduct Target Ther, 2022, 7(1): 194. doi:10.1038/s41392-022-01020-z
doi: 10.1038/s41392-022-01020-z |
21 |
PARBELL G P, TANG B M, NALOS M, et al. Identifying key regulatory genes in the whole blood of septic patients to monitor underlying immune dysfunctions[J]. Shock, 2013, 40(3):166-174. doi:10.1097/shk.0b013e31829ee604
doi: 10.1097/shk.0b013e31829ee604 |
22 |
TANG X, ZHANG L, WEI W. Roles of TRAFs in NF-κB signaling pathways mediated by BAFF[J]. Immunol Lett, 2018, 196:113-118. doi:10.1016/j.imlet.2018.01.010
doi: 10.1016/j.imlet.2018.01.010 |
23 | 张鹏. TRAF1转导跨膜TNF-α反向信号组成性活化NF-κB通路及其对白血病细胞耐药的影响[D]. 武汉:华中科技大学,2021. |
24 |
QU J W, HOU Y, CHEN Q X, et al. RNA demethylase ALKBH5 promotes tumorigenesis in multiple myeloma via TRAF1-mediated activation of NF-κB and MAPK signaling pathways[J]. Oncogene, 2022, 41(3):400-413. doi:10.1038/s41388-021-02095-8
doi: 10.1038/s41388-021-02095-8 |
25 | 周颖,蒋大军,田勇,等. 抑制TRAF6调节炎症和自噬改善脓毒症小鼠的心肌损伤和心功能[J]. 实用医学杂志,2024,40(5):608-416. |
[1] | Pan LIU,Deshuang XI,Rui HUANG,Yilin TENG,Rui LIU,Gaofeng ZENG,Shaohui. ZONG. Short⁃chain fatty acids alleviate γδT cell⁃mediated inflammatory response via inhibiting IL⁃17A and NF⁃κB signaling pathway [J]. The Journal of Practical Medicine, 2024, 40(8): 1088-1094. |
[2] | Zhen YANG,Shaoru JIANG,Xiaoyan CHEN,Xiaolin CHEN,Weimin DENG,Xinyu. GUO. Effect of Jinghou Zengzhi Granules on ovarian GDF9 secretion and granulosa cells apoptosis in controlled ovarian hyperstimulation rats [J]. The Journal of Practical Medicine, 2024, 40(7): 918-923. |
[3] | Ling XIAO,Chunlei GAO,Wei GUO,Ning WANG,Xuan ZHANG,Ming. LIU. Codonopsis polysaccharide protected LPS⁃induced acute lung injury by inhibiting MAPK/NF⁃κB signaling pathway in mice [J]. The Journal of Practical Medicine, 2024, 40(7): 948-954. |
[4] | Xiuli SHI,Jiaqi CHEN,Fan ZHU,Juan ZENG,Na. WU. The effect of miR⁃143⁃3p on pyroptosis of ulcerative colitis cells by regulating TLR2/NF⁃κB/NLRP3 [J]. The Journal of Practical Medicine, 2024, 40(15): 2056-2062. |
[5] | Huaming ZHANG,Wanshan HE,Yun HAN,Guanqiao CHEN,Bin CHEN,Zhifu WEI,Hengying WU,Bin. WEN. Screening of gene differential expression of adenosine deaminase RNA specific 1 in cervical cancer cells based on transcriptome sequencing technology [J]. The Journal of Practical Medicine, 2023, 39(24): 3169-3174. |
[6] | Xue AO,Xing SU,Yu HOU,Tianyi MA,Chao. DENG. P38MAPK/NF⁃κB⁃based study of the molecular mechanism of miR⁃146a intervention in septic cardiomyopathy [J]. The Journal of Practical Medicine, 2023, 39(24): 3188-3194. |
[7] | Zeqi WANG,Yihua GAO,Yuetong JIN,Shanshan CONG,Xuanshun. JIN. The effect of schisandrae B on hyperthyroidism heart disease was evaluated by velocity vector imaging combined with NF⁃κB [J]. The Journal of Practical Medicine, 2023, 39(22): 2940-2945. |
[8] | Shengnan JIANG,Wenbing ZHI,Hong ZHANG,Xiaoting WANG,Tingting SUN,Zongren XU,Jing CHEN,Ye LI,Yang. LIU. Mechanism of Sophocarpine on improving inflammation and mucous hypersecretion of human bronchial epithelial cells based on TLR4⁃NF⁃κB signaling pathway [J]. The Journal of Practical Medicine, 2023, 39(19): 2461-2468. |
[9] | Yunchun XU,Xinya YU,Yazhi WANG,Yuanying SHEN,Le. GUO. Effect of lncRNA NEAT1 on palmitic acid⁃induced LO2 cell injury and inflammatory response through regulation of NF⁃κB signaling pathway [J]. The Journal of Practical Medicine, 2023, 39(17): 2164-2170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||