1 |
FEUERSTEIN J D, MOSS A C, FARRAYE F A. Ulcerative Colitis[J]. Mayo Clin Proc, 2019,94(7):1357-1373. doi:10.1016/j.mayocp.2019.01.018
doi: 10.1016/j.mayocp.2019.01.018
|
2 |
CHEN K, SHANG S, YU S, et al. Identification and exploration of pharmacological pyroptosis-related biomarkers of ulcerative colitis[J]. Front Immunol, 2022,13:998470. doi:10.3389/fimmu.2022.998470
doi: 10.3389/fimmu.2022.998470
|
3 |
FAN L, XU C, GE Q, et al. A. Muciniphila Suppresses Colorectal Tumorigenesis by Inducing TLR2/NLRP3-Mediated M1-Like TAMs[J]. Cancer Immunol Res, 2021,9(10):1111-1124. doi:10.1158/2326-6066.cir-20-1019
doi: 10.1158/2326-6066.cir-20-1019
|
4 |
LI L, LIU Q, LE C, et al. Toll-like receptor 2 deficiency alleviates acute pancreatitis by inactivating the NF-κB/NLRP3 pathway[J]. Int Immunopharmacol, 2023,121:110547. doi:10.1016/j.intimp.2023.110547
doi: 10.1016/j.intimp.2023.110547
|
5 |
CHEN L, HEIKKINEN L, WANG C, et al. Trends in the development of miRNA bioinformatics tools[J]. Brief Bioinform, 2019,20(5):1836-1852. doi:10.1093/bib/bby054
doi: 10.1093/bib/bby054
|
6 |
YAN R, LIANG X, HU J. miR-141-3p alleviates ulcerative colitis by targeting SUGT1 to inhibit colonic epithelial cell pyroptosis[J]. Autoimmunity, 2023,56(1):2220988. doi:10.1080/08916934.2023.2220988
doi: 10.1080/08916934.2023.2220988
|
7 |
韩玲, 陈琴, 谢昌营, 等. 基于生物信息学分析miR-143调控TLR2信号通路对溃疡性结肠炎的影响[J]. 中国医药导报, 2023,20(13):13-17.
|
8 |
CHEN X, LIU G, YUAN Y, et al. NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling[J]. Cell Death Dis, 2019,10(12):906. doi:10.1038/s41419-019-2157-1
doi: 10.1038/s41419-019-2157-1
|
9 |
ZHANG W, WANG W, SHEN C, et al. Network pharmacology for systematic understanding of Schisandrin B reduces the epithelial cells injury of colitis through regulating pyroptosis by AMPK/Nrf2/NLRP3 inflammasome[J]. Aging (Albany NY), 2021,13(19):23193-23209. doi:10.18632/aging.203611
doi: 10.18632/aging.203611
|
10 |
何琼, 李建栋. 炎症性肠病流行病学研究进展[J]. 实用医学杂志, 2019,35(18):2962-2966. doi:10.3969/j.issn.1006-5725.2019.18.029
doi: 10.3969/j.issn.1006-5725.2019.18.029
|
11 |
LE BERRE C, HONAP S, PEYRIN-BIROULET L. Ulcerative colitis[J]. Lancet, 2023,402(10401):571-584. doi:10.1016/s0140-6736(23)00966-2
doi: 10.1016/s0140-6736(23)00966-2
|
12 |
CHEN K, SHANG S, YU S, et al. Identification and exploration of pharmacological pyroptosis-related biomarkers of ulcerative colitis[J]. Front Immunol, 2022,13:998470. doi:10.3389/fimmu.2022.998470
doi: 10.3389/fimmu.2022.998470
|
13 |
BURDETTE B E, ESPARZA A N, ZHU H, et al. Gasdermin D in pyroptosis[J]. Acta Pharm Sin B, 2021,11(9):2768-2782. doi:10.1016/j.apsb.2021.02.006
doi: 10.1016/j.apsb.2021.02.006
|
14 |
ZHEN Y, ZHANG H. NLRP3 Inflammasome and Inflammatory Bowel Disease[J]. Front Immunol, 2019,10:276. doi:10.3389/fimmu.2019.00276
doi: 10.3389/fimmu.2019.00276
|
15 |
YUAN Y Y, XIE K X, WANG S L, et al. Inflammatory caspase-related pyroptosis: mechanism, regulation and therapeutic potential for inflammatory bowel disease[J]. Gastroenterol Rep (Oxf), 2018,6(3):167-176. doi:10.1093/gastro/goy011
doi: 10.1093/gastro/goy011
|
16 |
CASTRO-DOPICO T, DENNISON T W, FERDINAND J R, et al. Anti-commensal IgG Drives Intestinal Inflammation and Type 17 Immunity in Ulcerative Colitis[J]. Immunity, 2019,50(4):1099-1114. doi:10.1016/j.immuni.2019.02.006
doi: 10.1016/j.immuni.2019.02.006
|
17 |
WANG H, CHAO K, NG S C, et al. Pro-inflammatory miR-223 mediates the cross-talk between the IL23 pathway and the intestinal barrier in inflammatory bowel disease[J]. Genome Biol, 2016,17:58. doi:10.1186/s13059-016-0901-8
doi: 10.1186/s13059-016-0901-8
|
18 |
ZHOU J, LIU J, GAO Y, et al. miRNA-Based Potential Biomarkers and New Molecular Insights in Ulcerative Colitis[J]. Front Pharmacol, 2021,12:707776. doi:10.3389/fphar.2021.707776
doi: 10.3389/fphar.2021.707776
|
19 |
POLYTARCHOU C, OIKONOMOPOULOS A, MAHURKAR S, et al. Assessment of Circulating MicroRNAs for the Diagnosis and Disease Activity Evaluation in Patients with Ulcerative Colitis by Using the Nanostring Technology[J]. Inflamm Bowel Dis, 2015,21(11):2533-2539. doi:10.1097/mib.0000000000000547
doi: 10.1097/mib.0000000000000547
|
20 |
WANG H, ZHANG S, YU Q, et al. Circulating MicroRNA223 is a New Biomarker for Inflammatory Bowel Disease[J]. Medicine (Baltimore), 2016,95(5):e2703. doi:10.1097/md.0000000000002703
doi: 10.1097/md.0000000000002703
|
21 |
BATRA S K, HEIER C R, DIAZ-CALDERON L, et al. Serum miRNAs Are Pharmacodynamic Biomarkers Associated With Therapeutic Response in Pediatric Inflammatory Bowel Disease[J]. Inflamm Bowel Dis, 2020,26(10):1597-1606. doi:10.1093/ibd/izaa209
doi: 10.1093/ibd/izaa209
|
22 |
LI X, YANG Y, WANG Z, et al. Multistage-Responsive Nanocomplexes Attenuate Ulcerative Colitis by Improving the Accumulation and Distribution of Oral Nucleic Acid Drugs in the Colon[J]. ACS Appl Mater Interfaces, 2022,14(1):2058-2070. doi:10.1021/acsami.1c21595
doi: 10.1021/acsami.1c21595
|
23 |
FAROOQI A A, QURESHI M Z, ATTAR R, et al. MicroRNA-143 as a new weapon against cancer: overview of the mechanistic insights and long non-coding RNA mediated regulation of miRNA-143 in different cancers[J]. Cell Mol Biol (Noisy-le-grand), 2019,65(6):1-5. doi:10.14715/cmb/2019.65.6.1
doi: 10.14715/cmb/2019.65.6.1
|
24 |
GOMES S E, PEREIRA D M, ROMA-RODRIGUES C, et al. Convergence of miR-143 overexpression, oxidative stress and cell death in HCT116 human colon cancer cells[J]. PLoS One, 2018,13(1):e191607. doi:10.1371/journal.pone.0191607
doi: 10.1371/journal.pone.0191607
|
25 |
GUO H, CHEN Y, HU X, et al. The regulation of Toll-like receptor 2 by miR-143 suppresses the invasion and migration of a subset of human colorectal carcinoma cells[J]. Mol Cancer, 2013,12:77. doi:10.1186/1476-4598-12-77
doi: 10.1186/1476-4598-12-77
|
26 |
LORD K A, HOFFMAN-LIEBERMANN B, LIEBERMANN D A. Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6[J]. Oncogene, 1990,5(7):1095-1097.
|
27 |
张颖慧, 董向前, 白丽萍, 等. Toll样受体、前列腺素受体EP2在溃疡性结肠炎组织的表达与炎症细胞因子的关系[J]. 四川医学, 2019,40(4):390-394.
|
28 |
ZHANG Z H, LIU R, NANA D U, et al. Efficacy of Sishen Wan on dinitrobenzene sulfonic acid-induced ulcerative colitis and its effect on toll-like receptor 2/interleukin-1 receptor-associated kinase-4/nuclear factor-κB signal pathway[J]. J Tradit Chin Med, 2022,42(4):565-575.
|
29 |
FU J, WU H. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation[J]. Annu Rev Immunol, 2023,41:301-316. doi:10.1146/annurev-immunol-081022-021207
doi: 10.1146/annurev-immunol-081022-021207
|
30 |
LI D, WU M. Pattern recognition receptors in health and diseases[J]. Signal Transduct Target Ther, 2021,6(1):291. doi:10.1038/s41392-021-00687-0
doi: 10.1038/s41392-021-00687-0
|
31 |
TOURKOCHRISTOU E, AGGELETOPOULOU I, KONSTANTAKIS C, et al. Role of NLRP3 inflammasome in inflammatory bowel diseases[J]. World J Gastroenterol, 2019,25(33):4796-4804. doi:10.3748/wjg.v25.i33.4796
doi: 10.3748/wjg.v25.i33.4796
|