The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (10): 1467-1472.doi: 10.3969/j.issn.1006-5725.2024.10.024
• Reviews • Previous Articles
Xuan LIANG,Jingran MU,Yan LUO,Tao XU,Junwei. ZENG()
Received:
2023-07-12
Online:
2024-05-25
Published:
2024-05-21
Contact:
Junwei. ZENG
E-mail:junweizeng@sohu.com
CLC Number:
Xuan LIANG,Jingran MU,Yan LUO,Tao XU,Junwei. ZENG. Research progress on the mechanism of CRMP2 phosphorylation in Alzheimer′s disease[J]. The Journal of Practical Medicine, 2024, 40(10): 1467-1472.
1 |
STRATTON H, BOINON L, MOUTAL A, et al. Coordinating synaptic signaling with CRMP2[J]. Int J Biochem Cell Biol, 2020, 124: 105759. doi:10.1016/j.biocel.2020.105759
doi: 10.1016/j.biocel.2020.105759 |
2 |
王思翔, 曾红梅, 李扬娜, 等. 诊断阿尔茨海默病潜在生物标志物的研究进展[J]. 实用医学杂志, 2019, 35(7):1173-1176. doi:10.3969/j.issn.1006-5725.2019.07.037
doi: 10.3969/j.issn.1006-5725.2019.07.037 |
3 |
WATAMURA N, TOBA J, YOSHII A, et al. Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer's disease model mice: Involvement of Cdk5 phosphorylation and the effect of ATRA treatment[J]. J Neurosci Res, 2016, 94(1):15-26. doi:10.1002/jnr.23674
doi: 10.1002/jnr.23674 |
4 |
MOUTAL A, WHITE K A, CHEFDEVILLE A, et al. Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions[J]. Mol Neurobiol, 2019, 56(10):6736-6755. doi:10.1007/s12035-019-1568-4
doi: 10.1007/s12035-019-1568-4 |
5 |
IP J P, FU A K, IP N Y. CRMP2: functional roles in neural development and therapeutic potential in neurological diseases[J]. Neuroscientist, 2014, 20(6):589-598. doi:10.1177/1073858413514278
doi: 10.1177/1073858413514278 |
6 |
KHANNA R, MOUTAL A, PEREZ-MILLER S, et al. Druggability of CRMP2 for neurodegenerative diseases[J]. ACS Chem Neurosci, 2020, 11(17):2492-2505. doi:10.1021/acschemneuro.0c00307
doi: 10.1021/acschemneuro.0c00307 |
7 |
HENSLEY K, KURSULA P. Collapsin Response Mediator Protein-2 (CRMP2) is a plausible etiological factor and potential therapeutic target in Alzheimer's Disease: comparison and contrast with microtubule-associated protein Tau[J]. J Alzheimers Dis, 2016, 53(1):1-14. doi:10.3233/jad-160076
doi: 10.3233/jad-160076 |
8 |
WANG L, JI S. Inhibition of ubc9-induced CRMP2 sumoylation disrupts glioblastoma cell proliferation[J]. J Mol Neurosci, 2019, 69(3):391-398. doi:10.1007/s12031-019-01368-y
doi: 10.1007/s12031-019-01368-y |
9 |
BRUSTOVETSKY T, KHANNA R, BRUSTOVETSKY N. CRMP2 is involved in regulation of mitochondrial morphology and motility in neurons[J], Cells, 2021, 10(10):2781. doi:10.3390/cells10102781
doi: 10.3390/cells10102781 |
10 |
FRANÇOIS-MOUTAL L, DUSTRUDE E T, WANG Y, et al. Inhibition of the Ubc9 E2 SUMO-conjugating enzyme-CRMP2 interaction decreases NaV1.7 currents and reverses experimental neuropathic pain[J]. Pain, 2018, 159(10):2115-2127. doi:10.1097/j.pain.0000000000001294
doi: 10.1097/j.pain.0000000000001294 |
11 |
MÖLLER D, GELLERT M, LANGEL W, et al. Molecular dynamics simulations and in vitro analysis of the CRMP2 thiol switch[J]. Mol Biosyst, 2017, 13(9):1744-1753. doi:10.1039/c7mb00160f
doi: 10.1039/c7mb00160f |
12 |
MUHA V, WILLIAMSON R, HILLS R, et al. Loss of CRMP2 O-GlcNAcylation leads to reduced novel object recognition performance in mice[J]. Open Biol, 2019, 9(11):190192. doi:10.1098/rsob.190192
doi: 10.1098/rsob.190192 |
13 |
FUKUI K, KAWAKAMI H, HONJO T, et al. Vitamin E deficiency induces axonal degeneration in mouse hippocampal neurons[J]. J Nutr Sci Vitaminol (Tokyo), 2012, 58(6):377-383. doi:10.3177/jnsv.58.377
doi: 10.3177/jnsv.58.377 |
14 |
LEE H, JOO J, NAH S S, et al. Changes in Dpysl2 expression are associated with prenatally stressed rat offspring and susceptibility to schizophrenia in humans[J]. Int J Mol Med, 2015, 35(6):1574-1586. doi:10.3892/ijmm.2015.2161
doi: 10.3892/ijmm.2015.2161 |
15 |
LIU C R, MIAO J, ZHANG Y L, et al. Effects of hypothyroidism on expression of CRMP2B and ARPC5 during development of the rat frontal cortex[J]. Int J Biol Sci, 2013, 9(2):209-218. doi:10.7150/ijbs.5646
doi: 10.7150/ijbs.5646 |
16 |
SOUTAR M P, THORNHILL P, COLE A R, et al. Increased CRMP2 phosphorylation is observed in Alzheimer's disease; does this tell us anything about disease development?[J]. Curr Alzheimer Res, 2009, 6(3):269-278. doi:10.2174/156720509788486572
doi: 10.2174/156720509788486572 |
17 |
MOUTAL A, JI Y, BELLAMPALLI S S, et al. Differential expression of Cdk5-phosphorylated CRMP2 following a spared nerve injury[J]. Mol Brain, 2020, 13(1):97. doi:10.1186/s13041-020-00633-1
doi: 10.1186/s13041-020-00633-1 |
18 |
WANG Y, WANG X L, XIE G L, et al. Collapsin response mediator protein-2-induced retinal ischemic injury in a novel mice model of ocular ischemia syndrome[J]. Chin Med J (Engl), 2017, 130(11):1342-1351. doi:10.4103/0366-6999.206340
doi: 10.4103/0366-6999.206340 |
19 |
WU Z, WANG G, WANG H, et al. Fluoxetine exposure for more than 2 days decreases the neuronal plasticity mediated by CRMP2 in differentiated PC12 cells[J]. Brain Res Bull, 2020, 158:99-107. doi:10.1016/j.brainresbull.2020.02.007
doi: 10.1016/j.brainresbull.2020.02.007 |
20 |
NA E J, NAM H Y, PARK J, et al. PI3K-mTOR-S6K signaling mediates neuronal viability via collapsin response mediator protein-2 expression[J]. Front Mol Neurosci, 2017, 10:288. doi:10.3389/fnmol.2017.00288
doi: 10.3389/fnmol.2017.00288 |
21 |
IKEZU S, INGRAHAM DIXIE K L, KORO L, et al. Tau-tubulin kinase 1 and amyloid-β peptide induce phosphorylation of collapsin response mediator protein-2 and enhance neurite degeneration in Alzheimer disease mouse models[J]. Acta Neuropathol Commun, 2020, 8(1):12. doi:10.1186/s40478-020-0890-4
doi: 10.1186/s40478-020-0890-4 |
22 |
MOKHTAR S H, KIM M J, MAGEE K A, et al. Amyloid-beta-dependent phosphorylation of collapsin response mediator protein-2 dissociates kinesin in Alzheimer's disease[J]. Neural Regen Res, 2018, 13(6):1066-1080. doi:10.4103/1673-5374.233451
doi: 10.4103/1673-5374.233451 |
23 |
BRUSTOVETSKY T, KHANNA R, BRUSTOVETSKY N. CRMP2 participates in regulating mitochondrial morphology and motility in Alzheimer's Disease[J]. Cells, 2023, 12(9):1287. doi:10.3390/cells12091287
doi: 10.3390/cells12091287 |
24 |
CZECH T, YANG J W, CSASZAR E, et al. Reduction of hippocampal collapsin response mediated protein-2 in patients with mesial temporal lobe epilepsy[J]. Neurochem Res, 2004, 29(12):2189-2196. doi:10.1007/s11064-004-7025-3
doi: 10.1007/s11064-004-7025-3 |
25 |
WILLIAMSON R, VAN AALTEN L, MANN D M, et al. CRMP2 hyperphosphorylation is characteristic of Alzheimer's disease and not a feature common to other neurodegenerative diseases[J]. J Alzheimers Dis, 2011, 27(3): 615-625. doi:10.3233/jad-2011-110617
doi: 10.3233/jad-2011-110617 |
26 |
BRUSTOVETSKY T, KHANNA R, BRUSTOVETSKY N. CRMP2 Participates in Regulating Mitochondrial Morphology and Motility in Alzheimer's Disease[J]. Cells, 2023, 12(9): 1287. doi:10.3390/cells12091287
doi: 10.3390/cells12091287 |
27 |
COLE A R, NOBLE W, VAN AALTEN L, et al. Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer's disease progression[J]. J Neurochem, 2007, 103(3):1132-1144. doi:10.1111/j.1471-4159.2007.04829.x
doi: 10.1111/j.1471-4159.2007.04829.x |
28 |
YANG Z, KUBOYAMA T, TOHDA C. A Systematic Strategy for Discovering a Therapeutic Drug for Alzheimer's Disease and Its Target Molecule[J]. Front Pharmacol, 2017, 8:340. doi:10.3389/fphar.2017.00340
doi: 10.3389/fphar.2017.00340 |
29 |
PAIK S, SOMVANSHI R K, OLIVEIRA H A, et al. Somatostatin Ameliorates β-Amyloid-Induced Cytotoxicity via the Regulation of CRMP2 Phosphorylation and Calcium Homeostasis in SH-SY5Y Cells[J]. Biomedicines, 2021, 9(1):27. doi:10.3390/biomedicines9010027
doi: 10.3390/biomedicines9010027 |
30 |
COLE A R, KNEBEL A, MORRICE N A, et al. GSK-3 phosphorylation of the Alzheimer epitope within collapsin response mediator proteins regulates axon elongation in primary neurons[J]. J Biol Chem, 2004, 279(48):50176-50180. doi:10.1074/jbc.c400412200
doi: 10.1074/jbc.c400412200 |
31 |
UCHIDA Y, OHSHIMA T, SASAKI Y, et al. Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer's disease[J]. Genes Cells, 2005, 10(2):165-179. doi:10.1111/j.1365-2443.2005.00827.x
doi: 10.1111/j.1365-2443.2005.00827.x |
32 | 刘延辉,夏淑轩,刘雅芳,等. Cdk5-CRMP通路在七氟醚抑制新生大鼠前额叶皮层树突发育中的作用[J]. 中国病理生理杂志, 2015,31(10):1729-1736. |
33 |
PETRATOS S, LI Q X, GEORGE A J, et al. The beta-amyloid protein of Alzheimer's disease increases neuronal CRMP-2 phosphorylation by a Rho-GTP mechanism[J]. Brain, 2008, 131(Pt 1):90-108. doi:10.1093/brain/awm260
doi: 10.1093/brain/awm260 |
34 |
尹红蕾, 李金凤, 乔立艳,等. 姜黄素对Aβ诱导的AD大鼠海马CRMP-2表达的影响[J].中国实用神经疾病杂志, 2012, 15(23):1-4. doi:10.3969/j.issn.1673-5110.2012.23.001
doi: 10.3969/j.issn.1673-5110.2012.23.001 |
35 |
ARIMURA N, KIMURA T, NAKAMUTA S, et al. Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27[J]. Dev Cell, 2009, 16(5):675-686. doi:10.1016/j.devcel.2009.03.005
doi: 10.1016/j.devcel.2009.03.005 |
36 |
TAKATA K, KITAMURA Y, NAKATA Y, et al. Involvement of WAVE accumulation in Abeta/APP pathology-dependent tangle modification in Alzheimer's disease[J]. Am J Pathol, 2009, 175(1):17-24. doi:10.2353/ajpath.2009.080908
doi: 10.2353/ajpath.2009.080908 |
37 |
高晨皓, 孙争宇, 张杰文. 线粒体动力学失衡与阿尔茨海默病发病机制的相关性研究进展[J]. 中华神经医学杂志, 2019, 18(4):337-343. doi:10.3760/cma.j.issn.1671-8925.2019.04.003
doi: 10.3760/cma.j.issn.1671-8925.2019.04.003 |
38 |
况煌, 田慧珍, 谭成勇, 等. 自噬与阿尔茨海默病的相关研究进展[J]. 中华神经医学杂志, 2019, 18(8):842-846. doi:10.3760/cma.j.issn.1671-8925.2019.08.017
doi: 10.3760/cma.j.issn.1671-8925.2019.08.017 |
39 |
HENSLEY K, GABBITA S P, VENKOVA K, et al. A derivative of the brain metabolite lanthionine ketimine improves cognition and diminishes pathology in the 3 × Tg-AD mouse model of Alzheimer disease[J]. J Neuropathol Exp Neurol, 2013, 72(10):955-969. doi:10.1097/nen.0b013e3182a74372
doi: 10.1097/nen.0b013e3182a74372 |
40 |
LIN F Y, LIN Y F, LIN Y S, et al. Relative D3 vitamin deficiency and consequent cognitive impairment in an animal model of Alzheimer's disease: Potential involvement of collapsin response mediator protein-2[J]. Neuropharmacology, 2020, 164:107910. doi:10.1016/j.neuropharm.2019.107910
doi: 10.1016/j.neuropharm.2019.107910 |
41 |
JI Y, HU Y, REN J, et al. CRMP2-derived peptide ST2-104 (R9-CBD3) protects SH-SY5Y neuroblastoma cells against Aβ25-35-induced neurotoxicity by inhibiting the pCRMP2/NMDAR2B signaling pathway[J]. Chem Biol Interact, 2019, 305:28-39. doi:10.1016/j.cbi.2019.03.005
doi: 10.1016/j.cbi.2019.03.005 |
42 | 孟盼盼, 张雨晴, 高媛媛, 等. CRMP2衍生的ST2-104多肽对阿尔茨海默病大鼠皮质神经元的保护作用[J].中风与神经疾病杂志, 2016, 33(3):203-206. |
43 |
姚远, 任晶红, 刘环宇, 等. CRMP2衍生的TAT-CBD3多肽对阿尔茨海默病神经元的保护作用[J].中国实验诊断学, 2021, 25(10):1518-1522. doi:10.3969/j.issn.1007-4287.2021.10.028
doi: 10.3969/j.issn.1007-4287.2021.10.028 |
44 |
SUTINEN E M, KOROLAINEN M A, HÄYRINEN J, et al. Interleukin-18 alters protein expressions of neurodegenerative diseases-linked proteins in human SH-SY5Y neuron-like cells[J]. Front Cell Neurosc, 2014, 8: 214. doi:10.3389/fncel.2014.00214
doi: 10.3389/fncel.2014.00214 |
45 |
孙缦利, 邓海峰, 马玲, 等. 美满霉素对阿尔茨海默病大鼠前额叶皮层CRMP-2和Caspase-3表达的影响[J]. 中国老年学杂志, 2018, 38(17):4236-4239. doi:10.3969/j.issn.1005-9202.2018.17.052
doi: 10.3969/j.issn.1005-9202.2018.17.052 |
46 |
LAWAL M, OLOTU F A, SOLIMAN M E S. Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer's disease using bioinformatics and computational tools[J]. Comput Biol Med, 2018, 98:168-177. doi:10.1016/j.compbiomed.2018.05.012
doi: 10.1016/j.compbiomed.2018.05.012 |
[1] | Lulu CHEN,Meng LUO,Kaiqi SU,Jing GAO,Xiaodong. FENG. Research progress of the endoplasmic reticulum⁃mitochondrial interactions in post⁃stroke cognitive impairment [J]. The Journal of Practical Medicine, 2024, 40(7): 1023-1028. |
[2] | Yingjun TAO,Tengzhu REN,Feng WEI,Xintong. LIU. Effects of agatroban combined with mitochondrial transplantation on endothelial function and hemorheology in mice with cerebral ischemia⁃reperfusion injury [J]. The Journal of Practical Medicine, 2024, 40(19): 2665-2671. |
[3] | Zhu LI,Yan WANG,Wenjing ZHOU,Haiying. WANG. Advances in the role of mitochondrial respiratory chain enzyme complexes in myocardial ischemia-reperfusion injury [J]. The Journal of Practical Medicine, 2024, 40(15): 2172-2176. |
[4] | Limin WEN,Ran LI,Yanlei HAO,Qingxia KONG,Min. XIA. Mitochondrial gene heterogeneity related to MELAS syndrome: A review of literature [J]. The Journal of Practical Medicine, 2024, 40(13): 1885-1888. |
[5] | Juan LIU,Yanjie LI,Hewei QIN,Luyao MA,Nannan ZHAO,Huimin. DING. Mechanism of action of dysregulated mitochondrial quality control system mediating Parkinson′s disease [J]. The Journal of Practical Medicine, 2024, 40(11): 1479-1482. |
[6] |
LI Ruonan, YANG Jun, ZHANG Jing, YANG Jian, XIANG Zujin..
Research progress of mitochondrial quality control system in cardiac aging [J]. The Journal of Practical Medicine, 2023, 39(8): 1052-1057. |
[7] | Changsong MA,Shuai HUANG,Qingde WA,Weizhi CHEN,Yang WANG,Xitao LINGHU,Yubo. TANG. Mechanism of ginkgolide B antagonizing vascular endothelial injury by inhibiting endoplasmic reticulum stress [J]. The Journal of Practical Medicine, 2023, 39(24): 3175-3181. |
[8] | Zhaobing LI,Yulu LIU,Yunhui HUANG. The mechanism of down⁃regulation of HPSE alleviating myocardial ischemia⁃reperfusion injury in rats [J]. The Journal of Practical Medicine, 2023, 39(21): 2761-2767. |
[9] | Jing WU,Zuqiong NIE,Wanling. YIN. MiR⁃499 protects hypoxia/reoxygenation (H/R) cardiomyocytes through Drp1⁃mediated mitochondrial autophagy [J]. The Journal of Practical Medicine, 2023, 39(17): 2196-2203. |
[10] | Jie DING,Siqi LIU,Yiying WANG,Lin WANG,Chenghong SHI,Fang WANG,Guoji CHANG,Lijuan HUA,Huayi CHEN,Shenghao LI,Qingqing. WANG. Gentiopicroside promotes autophagy to alleviate nonalcoholic steatohepatitis in rats via up⁃regulating the expression of LC3Ⅱ [J]. The Journal of Practical Medicine, 2023, 39(16): 2022-2028. |
[11] | XU Ting, YANG Li, HUANG Wei, YU Hao. . Promotion of vascular calcification through sterol ⁃ O ⁃ acyltransferase 1 ⁃ mediated mitochondrial division [J]. The Journal of Practical Medicine, 2023, 39(11): 1396-1402. |
[12] |
CHEN Jian, YANG Li, JIN Jie, WANG Lei, SUN Jianjun, DONG Min, CHAI Guoxiang..
Efficacy and safety of CT⁃guided thoracic drainage microtubule for patients with emphysema complicated with giant pulmonary bullae [J]. The Journal of Practical Medicine, 2022, 38(9): 1125-1129. |
[13] | YAN Peng, DENG Yuqiong, HUANG Xinglan, HUANG Caifeng, ZHAO Xiaoqing, LIU Sheng, CHENG Xiping, LIU Xiaodong. . Effects of dexamethasone on the reactive oxygen species and MT⁃CO1 in lung tissues of asthma mice [J]. The Journal of Practical Medicine, 2022, 38(6): 731-737. |
[14] |
WANG Qingling, ZHANG Mengxian, ZHOU Yingdong, GUOXiangdong, KANG Haoran, WANG Qinglin..
The mechanism of Ginkgo biloba extract in alleviating oxidative stress damage to the cochlea of presbycu⁃sis rats by the Nrf2/HO ⁃ 1 signal pathway [J]. The Journal of Practical Medicine, 2022, 38(3): 311-317. |
[15] |
WANG Siqi, LU Xue, JIN Xiangzi, YU Jie, JIN Guangming. .
Relationship between 12026 A→G mutation of mitochondrial ND4 gene and blood flow dynamics of central retinal in diabetic retinopathy [J]. The Journal of Practical Medicine, 2022, 38(14): 1743-1746. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||