1 |
COSTA H N, ESTEVES A R, EMPADINHAS N, et al. Parkinson's Disease: A Multisystem Disorder [J]. Neurosci Bull, 2023, 39(1): 113-124. doi:10.1007/s12264-022-00934-6
doi: 10.1007/s12264-022-00934-6
|
2 |
耿磊, 王锐, 张照婷,等. 弥散张量成像对帕金森病前驱期的诊断价值 [J]. 实用医学杂志, 2023, 39(21): 2843-2849. doi:10.3969/j.issn.1006-5725.2023.21.025
doi: 10.3969/j.issn.1006-5725.2023.21.025
|
3 |
MORADI VASTEGANI S, NASROLAHI A, GHADERI S, et al. Mitochondrial Dysfunction and Parkinson's Disease: Pathogenesis and Therapeutic Strategies [J]. Neurochem Res, 2023, 48(8): 2285-2308. doi:10.1007/s11064-023-03904-0
doi: 10.1007/s11064-023-03904-0
|
4 |
HENRICH M T, OERTEL W H, SURMEIER D J, et al. Mitochondrial dysfunction in Parkinson's disease - a key disease hallmark with therapeutic potential [J]. Mol Neurodegener, 2023, 18(1): 83. doi:10.1186/s13024-023-00676-7
doi: 10.1186/s13024-023-00676-7
|
5 |
CHEN C, TURNBULL D M, REEVE A K. Mitochondrial Dysfunction in Parkinson's Disease-Cause or Consequence? [J]. Biology (Basel), 2019, 8(2):38. doi:10.3390/biology8020038
doi: 10.3390/biology8020038
|
6 |
CHEN C, MCDONALD D, BLAIN A, et al. Parkinson's disease neurons exhibit alterations in mitochondrial quality control proteins [J]. NPJ Parkinsons Dis, 2023, 9(1): 120. doi:10.1038/s41531-023-00564-3
doi: 10.1038/s41531-023-00564-3
|
7 |
TREMPE J F, GEHRING K. Structural Mechanisms of Mitochondrial Quality Control Mediated by PINK1 and Parkin [J]. J Mol Biol, 2023, 435(12): 168090. doi:10.1016/j.jmb.2023.168090
doi: 10.1016/j.jmb.2023.168090
|
8 |
JOHNSON J, MERCADO-AYON E, MERCADO-AYON Y, et al. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases [J]. Arch Biochem Biophys, 2021, 702: 108698. doi:10.1016/j.abb.2020.108698
doi: 10.1016/j.abb.2020.108698
|
9 |
ASGHAR M, ODEH A, FATTAHI A J, et al. Mitochondrial biogenesis, telomere length and cellular senescence in Parkinson's disease and Lewy body dementia [J]. Sci Rep, 2022, 12(1): 17578. doi:10.1038/s41598-022-22400-z
doi: 10.1038/s41598-022-22400-z
|
10 |
PANES J D, WENDT A, RAMIREZ-MOLINA O, et al. Deciphering the role of PGC-1α in neurological disorders: from mitochondrial dysfunction to synaptic failure [J]. Neural Regen Res, 2022, 17(2): 237-245. doi:10.4103/1673-5374.317957
doi: 10.4103/1673-5374.317957
|
11 |
CHOONG C J, MOCHIZUKI H. Involvement of Mitochondria in Parkinson's Disease [J]. Int J Mol Sci, 2023, 24(23):17027. doi:10.3390/ijms242317027
doi: 10.3390/ijms242317027
|
12 |
HU Z, MAO C, WANG H, et al. CHIP protects against MPP(+)/MPTP-induced damage by regulating Drp1 in two models of Parkinson's disease [J]. Aging (Albany NY), 2021, 13(1): 1458-1472. doi:10.18632/aging.202389
doi: 10.18632/aging.202389
|
13 |
CHEN J, GAO X, ZHENG C, et al. Low-dose Cu exposure enhanced α-synuclein accumulation associates with mitochondrial impairments in mice model of Parkinson's disease [J]. Toxicol Lett, 2023, 387: 14-27. doi:10.1016/j.toxlet.2023.09.004
doi: 10.1016/j.toxlet.2023.09.004
|
14 |
GAO S, HU J. Mitochondrial Fusion: The Machineries In and Out [J]. Trends Cell Biol, 2021, 31(1): 62-74. doi:10.1016/j.tcb.2020.09.008
doi: 10.1016/j.tcb.2020.09.008
|
15 |
WANG X L, FENG S T, WANG Y T, et al. Mitophagy, a Form of Selective Autophagy, Plays an Essential Role in Mitochondrial Dynamics of Parkinson's Disease [J]. Cell Mol Neurobiol, 2022, 42(5): 1321-1339. doi:10.1007/s10571-021-01039-w
doi: 10.1007/s10571-021-01039-w
|
16 |
DEHESTANI M, LIU H, SREELATHA A A K, et al. Mitochondrial and autophagy-lysosomal pathway polygenic risk scores predict Parkinson's disease [J]. Mol Cell Neurosci, 2022, 121: 103751. doi:10.1016/j.mcn.2022.103751
doi: 10.1016/j.mcn.2022.103751
|
17 |
SOYAL S M, ZARA G, FERGER B, et al. The PPARGC1A locus and CNS-specific PGC-1α isoforms are associated with Parkinson's Disease [J]. Neurobiol Dis, 2019, 121: 34-46. doi:10.1016/j.nbd.2018.09.016
doi: 10.1016/j.nbd.2018.09.016
|
18 |
WU P, DONG Y, CHEN J, et al. Liraglutide Regulates Mitochondrial Quality Control System Through PGC-1α in a Mouse Model of Parkinson's Disease [J]. Neurotox Res, 2022, 40(1): 286-297. doi:10.1007/s12640-021-00460-9
doi: 10.1007/s12640-021-00460-9
|
19 |
CARDANHO-RAMOS C, MORAIS V A. Mitochondrial Biogenesis in Neurons: How and Where [J]. Int J Mol Sci, 2021, 22(23):13059. doi:10.3390/ijms222313059
doi: 10.3390/ijms222313059
|
20 |
BARAZZUOL L, GIAMOGANTE F, BRINI M, et al. PINK1/Parkin Mediated Mitophagy, Ca(2+) Signalling, and ER-Mitochondria Contacts in Parkinson's Disease [J]. Int J Mol Sci, 2020, 21(5):1772. doi:10.3390/ijms21051772
doi: 10.3390/ijms21051772
|
21 |
QUINN P M J, MOREIRA P I, AMBRóSIO A F, et al. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation [J]. Acta Neuropathol Commun, 2020, 8(1): 189. doi:10.1186/s40478-020-01062-w
doi: 10.1186/s40478-020-01062-w
|
22 |
IMBERECHTS D, KINNART I, WAUTERS F, et al. DJ-1 is an essential downstream mediator in PINK1/parkin-dependent mitophagy [J]. Brain, 2022, 145(12): 4368-4384. doi:10.1093/brain/awac313
doi: 10.1093/brain/awac313
|
23 |
李若男, 杨俊, 张静,等. 线粒体质量控制系统在心脏衰老中的研究进展 [J]. 实用医学杂志, 2023, 39(8): 1052-1057. doi:10.3969/j.issn.1006-5725.2023.08.023
doi: 10.3969/j.issn.1006-5725.2023.08.023
|
24 |
ZHAO Y, ZHANG J, ZHENG Y, et al. NAD(+) improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1α pathway [J]. J Neuroinflammation, 2021, 18(1): 207. doi:10.1186/s12974-021-02250-8
doi: 10.1186/s12974-021-02250-8
|
25 |
BERENGUER-ESCUDER C, GROSSMANN D, ANTONY P, et al. Impaired mitochondrial-endoplasmic reticulum interaction and mitophagy in Miro1-mutant neurons in Parkinson's disease [J]. Hum Mol Genet, 2020, 29(8): 1353-1364. doi:10.1093/hmg/ddaa066
doi: 10.1093/hmg/ddaa066
|
26 |
MENCKE P, BOUSSAAD I, ROMANO C D, et al. The Role of DJ-1 in Cellular Metabolism and Pathophysiological Implications for Parkinson's Disease [J]. Cells, 2021, 10(2):347. doi:10.3390/cells10020347
doi: 10.3390/cells10020347
|
27 |
BORSCHE M, PEREIRA S L, KLEIN C, et al. Mitochondria and Parkinson's Disease: Clinical, Molecular, and Translational Aspects [J]. J Parkinsons Dis, 2021, 11(1): 45-60. doi:10.3233/jpd-201981
doi: 10.3233/jpd-201981
|
28 |
WANG X L, FENG S T, WANG Z Z, et al. Parkin, an E3 Ubiquitin Ligase, Plays an Essential Role in Mitochondrial Quality Control in Parkinson's Disease [J]. Cell Mol Neurobiol, 2021, 41(7): 1395-1411. doi:10.1007/s10571-020-00914-2
doi: 10.1007/s10571-020-00914-2
|
29 |
DOLGACHEVA L P, BEREZHNOV A V, FEDOTOVA E I, et al. Role of DJ-1 in the mechanism of pathogenesis of Parkinson's disease [J]. J Bioenerg Biomembr, 2019, 51(3): 175-188. doi:10.1007/s10863-019-09798-4
doi: 10.1007/s10863-019-09798-4
|