The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (6): 844-849.doi: 10.3969/j.issn.1006-5725.2024.06.019
• Medical Examination and Clinical Diagnosis • Previous Articles Next Articles
Jianliang YAN1,2,Zeyu XIE3,Rongrong JING1,Ming. CUI1()
Received:
2023-09-22
Online:
2024-03-25
Published:
2024-04-08
Contact:
Ming. CUI
E-mail:wscm163@163.com
CLC Number:
Jianliang YAN,Zeyu XIE,Rongrong JING,Ming. CUI. Research on establishing gastric cancer lymph node metastasis prediction model based on machine learning and routine laboratory indicators[J]. The Journal of Practical Medicine, 2024, 40(6): 844-849.
Tab.1
Basic characteristics of subjects"
临床指标 | 变量 | 训练集(n = 555) | 测试集(n = 186) | χ2值 | P值 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
non-LNM (n = 197) | LNM (n = 358) | χ2值 | P值 | non-LNM (n = 68) | LNM (n = 118) | χ2值 | P值 | ||||
性别 | 男 | 146 | 242 | 2.263 | 0.133 | 38 | 87 | 5.451 | 0.020 | 0.360 | 0.548 |
女 | 51 | 116 | 30 | 31 | |||||||
年龄 | < 均值(66) | 98 | 159 | 1.247 | 0.264 | 29 | 60 | 0.857 | 0.355 | 0.078 | 0.779 |
≥ 均值(66) | 99 | 199 | 39 | 58 | |||||||
分化程度 | G1 | 19 | 2 | 44.560 | < 0.001 | 17 | 1 | 44.437 | < 0.001 | 22.399 | < 0.001 |
G2 | 102 | 214 | 24 | 49 | |||||||
G3 | 56 | 132 | 18 | 66 | |||||||
缺失 | 20 | 10 | 9 | 2 | |||||||
NLR | < 中位数(2.118) | 110 | 167 | 3.933 | 0.047 | 39 | 52 | 2.539 | 0.111 | 0.022 | 0.882 |
≥ 中位数(2.118) | 87 | 191 | 29 | 66 | |||||||
pTNM T阶段 | T1 | 107 | 23 | 207.072 | < 0.001 | 44 | 3 | 95.694 | < 0.001 | 3.743 | 0.442 |
T2 | 41 | 37 | 8 | 12 | |||||||
T3 | 45 | 272 | 15 | 89 | |||||||
T4 | 1 | 22 | 0 | 13 | |||||||
缺失 | 3 | 4 | 1 | 1 | |||||||
pTNM N阶段 | N0 | 197 | 0 | 555.000 | < 0.001 | 68 | 0 | 186.000 | < 0.001 | 0.452 | 0.929 |
N1 | 0 | 105 | 0 | 38 | |||||||
N2 | 0 | 98 | 0 | 30 | |||||||
N3 | 0 | 155 | 0 | 50 |
Tab.2
Comparison of evaluation features between the training and test sets of five machine learning models"
训练集(n = 555, 197 LNM, 358 non-LNM) | 测试集(n = 186, 68 LNM, 118 non-LNM) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
模型 | AUC | F1 | ACC | 敏感度 | 特异度 | PPV | NPV | AUC | F1 | ACC | 敏感度 | 特异度 | PPV | NPV | |
AdaBoost | 0.999 | 0.982 | 0.977 | 0.974 | 0.978 | 0.960 | 0.986 | 0.968 | 0.926 | 0.903 | 0.887 | 0.911 | 0.833 | 0.942 | |
RF | 0.990 | 0.950 | 0.935 | 0.918 | 0.944 | 0.899 | 0.955 | 0.960 | 0.896 | 0.866 | 0.815 | 0.893 | 0.803 | 0.900 | |
KNN | 0.879 | 0.844 | 0.800 | 0.720 | 0.845 | 0.724 | 0.843 | 0.813 | 0.823 | 0.763 | 0.690 | 0.797 | 0.606 | 0.850 | |
SVM | 0.763 | 0.767 | 0.659 | 0.550 | 0.684 | 0.276 | 0.874 | 0.750 | 0.771 | 0.661 | 0.548 | 0.684 | 0.258 | 0.883 | |
MLP | 0.749 | 0.778 | 0.659 | 0.586 | 0.668 | 0.171 | 0.933 | 0.742 | 0.800 | 0.683 | 0.818 | 0.674 | 0.136 | 0.983 |
1 |
XIA C, DONG X, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022,135(5):584-590. doi:10.1097/cm9.0000000000002108
doi: 10.1097/cm9.0000000000002108 |
2 |
WANG K, JIANG X, REN Y,et al. The significance of preoperative serum carcinoembryonic antigen levels in the prediction of lymph node metastasis and prognosis in locally advanced gastric cancer: a retrospective analysis[J]. BMC Gastroenterol,2020, 20(1): 100. doi:10.1186/s12876-020-01255-6
doi: 10.1186/s12876-020-01255-6 |
3 |
LI Y, XIE F, XIONG Q, et al. Machine learning for lymph node metastasis prediction of in patients with gastric cancer: A systematic review and meta-analysis[J]. Front Oncol, 2022,12:946038. doi:10.3389/fonc.2022.946038
doi: 10.3389/fonc.2022.946038 |
4 |
TIAN H, NING Z, ZONG Z, et al. Application of Machine Learning Algorithms to Predict Lymph Node Metastasis in Early Gastric Cancer[J]. Front Med (Lausanne), 2022,8:759013. doi:10.3389/fmed.2021.759013
doi: 10.3389/fmed.2021.759013 |
5 |
ZHANG Y, ZHANG J, YANG L, et al. A meta-analysis of the utility of transabdominal ultrasound for evaluation of gastric cancer[J]. Medicine (Baltimore),2021,100 (32):e26928. doi:10.1097/md.0000000000026928
doi: 10.1097/md.0000000000026928 |
6 |
CHARILAOU P, BATTAT R. Machine learning models and over-fitting considerations[J]. World J Gastroenterol,2022,28(5):605-607. doi:10.3748/wjg.v28.i5.605
doi: 10.3748/wjg.v28.i5.605 |
7 |
MACEACHERN S J, FORKERT N D. Machine learning for precision medicine[J].Genome, 2021,64(4):416-425. doi:10.1139/gen-2020-0131
doi: 10.1139/gen-2020-0131 |
8 |
NGIAM K Y, KHOR I W. Big data and machine learning algorithms for health-care delivery[J]. Lancet Oncol,2019,20(5):e262-e273. doi:10.1016/s1470-2045(19)30149-4
doi: 10.1016/s1470-2045(19)30149-4 |
9 |
PRABHA A, YADAV J, RABI A, et al. Design of intelligent diabetes mellitus detection system using hybrid feature selection based XGBoost classifier[J]. Comput Biol Med, 2021,136:104664. doi:10.1016/j.compbiomed.2021.104664
doi: 10.1016/j.compbiomed.2021.104664 |
10 |
LUO Y, XUE Y, SONG H, et al. Machine learning based on routine laboratory indicators promoting the discrimination between active tuberculosis and latent tuberculosis infection[J]. J Infect, 2022,84(5):648-657. doi:10.1016/j.jinf.2021.12.046
doi: 10.1016/j.jinf.2021.12.046 |
11 |
ALBARADEI S, THAFAR M, ALSAEDI A, et al. Machine learning and deep learning methods that use omics data for metastasis prediction[J]. Comput Struct Biotechnol J, 2021,19:5008-5018. doi:10.1016/j.csbj.2021.09.001
doi: 10.1016/j.csbj.2021.09.001 |
12 |
LEI N, ZHANG X, WEI M, et al. Machine learning algorithms' accuracy in predicting kidney disease progression: a systematic review and meta-analysis[J]. BMC Med Inform Decis Mak, 2022,22(1):205. doi:10.1186/s12911-022-01951-1
doi: 10.1186/s12911-022-01951-1 |
13 |
LIU H Q, LIN S Y, SONG Y D, et al. Machine learning on MRI radiomic features: identification of molecular subtype alteration in breast cancer after neoadjuvant therapy[J]. Eur Radiol,2023,33(4):2965-2974. doi:10.1007/s00330-022-09264-7
doi: 10.1007/s00330-022-09264-7 |
14 |
SUN Y, DING S, ZHANG Z, et al. An improved grid search algorithm to optimize SVR for prediction[J]. Soft Comput,2021,25: 5633-5644. doi:10.1007/s00500-020-05560-w
doi: 10.1007/s00500-020-05560-w |
15 |
邱晖. 中性粒细胞-淋巴细胞比对早期胃癌淋巴结转移的预测价值与预后影响分析[J]. 黑龙江医药科学,2022,45(6):144-147. doi:10.3969/j.issn.1008-0104.2022.06.059
doi: 10.3969/j.issn.1008-0104.2022.06.059 |
16 |
YANG Z, XU Q, BAO S, et al. Learning With Multiclass AUC: Theory and Algorithms[J]. IEEE Trans Pattern Anal Mach Intell,2022,44(11):7747-7763. doi:10.1109/tpami.2021.3101125
doi: 10.1109/tpami.2021.3101125 |
17 |
罗东明,陈德伦,汪志华,等. 血清中AFP、FGA、PG、PSA在预测早期胃癌患者淋巴结转移和手术疗效监测中的临床意义[J].中国老年学杂志,2022,42(5):1081-1084. doi:10.3969/j.issn.1005-9202.2022.05.018
doi: 10.3969/j.issn.1005-9202.2022.05.018 |
18 | 李焱芳,陶芹,李韶华,等. 卡培他滨辅助紫杉醇+顺铂化疗对胃癌患者cTnI、BNP的影响[J]. 现代消化及介入诊疗,2021,26(4):437-440. |
19 |
HUANG C, HU C, ZHU J, et al. Establishment of Decision Rules and Risk Assessment Model for Preoperative Prediction of Lymph Node Metastasis in Gastric Cancer[J]. Front Oncol,2020,10:1638. doi:10.3389/fonc.2020.01638
doi: 10.3389/fonc.2020.01638 |
20 |
GAO X, MA T, CUI J, et al. A radiomics-based model for prediction of lymph node metastasis in gastric cancer[J]. Eur J Radiol,2020,129:109069. doi:10.1016/j.ejrad.2020.109069
doi: 10.1016/j.ejrad.2020.109069 |
21 |
顾玉花. CysC、β2-MG联合检测对胃癌患者化疗后肾脏早期损害的诊断价值[J]. 山东医学高等专科学校学报,2014,36(1):49-51. doi:10.3969/j.issn.1674-0947.2014.01.022
doi: 10.3969/j.issn.1674-0947.2014.01.022 |
22 |
YIN H M, HE Q, CHEN J, et al. Drug metabolism-related eight-gene signature can predict the prognosis of gastric adenocarcinoma[J]. J Clin Lab Anal,2021,35(12):e24085. doi:10.1002/jcla.24085
doi: 10.1002/jcla.24085 |
23 | 孙芳,许永波,崔广和,等. 基于超声特征构建机器学习模型预测浸润性乳腺癌Luminal分型[J]. 实用医学杂志,2022,38(18):2279-2283. |
24 |
严健亮,景蓉蓉,谢泽宇,等. 机器学习在胃癌生物标志物挖掘中的应用进展[J]. 实用医学杂志,2023,39(6):783-787. doi:10.3969/j.issn.1006-5725.2023.06.023
doi: 10.3969/j.issn.1006-5725.2023.06.023 |
25 |
YANG B, LI W, WU X, et al. Comparison of Ruptured Intracranial Aneurysms Identification Using Different Machine Learning Algorithms and Radiomics [J].Diagnostics (Basel),2023,13(16):2627. doi:10.3390/diagnostics13162627
doi: 10.3390/diagnostics13162627 |
26 |
TANG J, HENDERSON A, GARDNER P. Exploring AdaBoost and Random Forests machine learning approaches for infrared pathology on unbalanced data sets[J]. Analyst, 2021, 146(19):5880-5891. doi:10.1039/d0an02155e
doi: 10.1039/d0an02155e |
[1] | Xiaomei CHEN,Anqi WANG,Jizhen YANG,Miao YU. Prognosis and immune correlation analysis of m1A/m5C/m6A/m7G regulated genes in gastric cancer [J]. The Journal of Practical Medicine, 2024, 40(9): 1230-1237. |
[2] | Shu CHEN,Jinglei ZHANG,Kang RONG,Nan ZHANG,Weiyi SUN. Research progress of exosomes in distant metastasis and drug resistance of gastric cancer [J]. The Journal of Practical Medicine, 2024, 40(6): 870-876. |
[3] | Li XU,Shanshan HU,Haiming. ZHAO. LncRNA GNAS⁃AS1 participates in the proliferation and migration of gastric cancer cells by regulating the miR⁃449a/Notch1 axis [J]. The Journal of Practical Medicine, 2024, 40(4): 483-489. |
[4] | Liangjiang HUANG,Dewen MAO,Jinghui ZHENG,Minggang WANG,Chun YAO. Application of artificial intelligence in HE risk prediction modelling and research advances [J]. The Journal of Practical Medicine, 2024, 40(3): 289-294. |
[5] | Jian ZHAO,Songjie LIU,Guanchao ZHANG,Yuhou SHEN,Fengchen LI,Bing XU. Expression of CENPF and miR⁃1⁃3p in the serum of patients with advanced gastric cancer and their correlation with prognosis [J]. The Journal of Practical Medicine, 2024, 40(3): 365-370. |
[6] | Jun XU,Xiaoli WANG,Jingyi NI,Didi. ZHANG. Clinical efficacy and safety of disitamab vedotin in the treatment of advanced gastric cancer [J]. The Journal of Practical Medicine, 2024, 40(20): 2913-2917. |
[7] | Chunyan NIU,Xiaoping WANG,Xiangyang ZHAO,Jiankang HUANG,Yue CHEN,Yongqiang SHI,Yongqiang SONG,Hui WANG,Xinguo WU,Yongdan BU,Jijin LI,Tao TAO,Jinhua WU,Changlin XUE,Fuyu ZHANG,Jinming YANG,Chunrong HAN,Juan YUAN,Yinling WU,Hongbing XIONG,Peng XIAO. A multicenter population investigation on precancerous lesions of gastric cancer in Lishui District, Nanjing [J]. The Journal of Practical Medicine, 2024, 40(20): 2929-2934. |
[8] | Bei PEI,Yi ZHANG,Qin SUN,Yueping JIN,Xuejun. LI. Study of the association between the chemokine CXCL5 and the onset of chronic atrophic gastritis and gastric precancerous lesions [J]. The Journal of Practical Medicine, 2024, 40(15): 2098-2104. |
[9] | Yi ZHANG,Fangqi MA,Siyuan WEI,Xuejun. LI. Role and mechanism of XPOT inhibition by atractylenolide I in gastric cancer cells [J]. The Journal of Practical Medicine, 2024, 40(14): 1928-1934. |
[10] | Wei WANG,Xinxin ZHANG,Guanghui WANG,Jie ZHANG,Anran CHEN,Jianguang. JIA. TMSB10 promotes gastric cancer proliferation and glycolysis based on activation of AMPK/mTOR signaling pathway [J]. The Journal of Practical Medicine, 2024, 40(11): 1519-1525. |
[11] | Wushuang XIAO,Linjie HONG,Zhen YU,Ping YANG,Jieming ZHANG,Siyang PENG,Xiangyang WEI,Yidong CHEN,Side LIU,Jide. WANG. Expression of S100A7A in gastric cancer and its effect on proliferation and metastasis [J]. The Journal of Practical Medicine, 2024, 40(10): 1344-1350. |
[12] | Tian GU,Chunhong LIU,Fei ZHANG,Wei QIAN,Yanqiu ZHU,Mingliang CHU,Jiemin. LIU. The mechanism of emodin inhibiting YAP1 and FOXD1 in gastric cancer AGS cells and its related study [J]. The Journal of Practical Medicine, 2024, 40(1): 59-64. |
[13] |
YAN Jianliang, JING Rongrong, XIE Zeyu, CUI Ming..
Applicationprogress of machine learning in mining of gastric cancer biomarker [J]. The Journal of Practical Medicine, 2023, 39(6): 783-787. |
[14] | Guang YANG,Danfeng ZHANG,Xiaona FENG,Yan. ZHANG. Expression of programmed cell death protein 5 in cervical cancer and its relationship with lymph node metastasis [J]. The Journal of Practical Medicine, 2023, 39(24): 3210-3213. |
[15] | Xiran SHI,Heng WANG,Libing HE,Zhiqiang QIU,Hongjian LI,Xiaoxue. XU. Advance in predicting lymph node metastasis of breast cancer by multimodal MRI [J]. The Journal of Practical Medicine, 2023, 39(22): 2861-2865. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||