实用医学杂志 ›› 2025, Vol. 41 ›› Issue (14): 2152-2159.doi: 10.3969/j.issn.1006-5725.2025.14.005
• 专题报道:乳腺癌 • 上一篇
段玉灵1,周雪枝1,李永义1,马丽霞1,杨德盛2,程姣3,伍燕1,刘桃1,蒋国元1,王梅4()
收稿日期:
2025-03-20
出版日期:
2025-07-25
发布日期:
2025-07-29
通讯作者:
王梅
E-mail:15685295689@163.com
基金资助:
Yuling DUAN1,Xuezhi ZHOU1,Yongyi LI1,Lixia MA1,Desheng YANG2,Jiao CHENG3,Yan WU1,Tao LIU1,Guoyuan JIANG1,Mei. WANG4()
Received:
2025-03-20
Online:
2025-07-25
Published:
2025-07-29
Contact:
Mei. WANG
E-mail:15685295689@163.com
摘要:
目的 比较乳腺磁共振(MRI)三种测量方法——RECIST 1.1标准、最优法和三维(3D)体积测量法在乳腺癌新辅助化疗(NAC)疗效评估中的诊断性能差异,筛选更具临床实用性的影像学评估方式。 方法 纳入2019—2023年间接受NAC及手术治疗的乳腺癌患者110例。化疗前后分别于1周内完成乳腺MRI,采用RECIST 1.1、最优法和3D体积测量法进行疗效评估,以MP病理分级为金标准。比较3种方法的敏感度、特异度、准确性及受试者工作特征曲线(ROC)下面积(AUC),并通过Delong检验进行统计比较。 结果 RECIST 1.1、最优法和3D测量法的AUC分别为0.768、0.795和0.883,3D体积测量法显著优于其他两种方法(P < 0.05)。3D法在敏感度(98.9%)、特异度(77.8%)和准确性(95.5%)方面均表现最优。最优法在部分指标上亦优于RECIST 1.1。 结论 3D体积测量法在乳腺癌NAC疗效评估中显示出最佳的诊断性能,具有更高的临床应用价值。最优法相较于传统RECIST 1.1方法也表现出更优的判别能力,是资源受限情况下的可行替代方案。
中图分类号:
段玉灵,周雪枝,李永义,马丽霞,杨德盛,程姣,伍燕,刘桃,蒋国元,王梅. 不同MRI测量方式评估乳腺癌新辅助治疗疗效的临床价值[J]. 实用医学杂志, 2025, 41(14): 2152-2159.
Yuling DUAN,Xuezhi ZHOU,Yongyi LI,Lixia MA,Desheng YANG,Jiao CHENG,Yan WU,Tao LIU,Guoyuan JIANG,Mei. WANG. Clinical value analysis of different MRI measurement methods in evaluating the efficacy of neoadjuvant therapy for breast cancer[J]. The Journal of Practical Medicine, 2025, 41(14): 2152-2159.
[1] | 中国抗癌协会乳腺癌专业委员会,中华医学会肿瘤学分会乳腺肿瘤学组. 中国抗癌协会乳腺癌诊治指南与规范(2024年版)[J]. 中国癌症杂志, 2023,33(12):1092-1187. |
[2] | 刘芬,赵辉,郭利敏. 多组学联合检测对乳腺癌临床病理特征、新辅助化疗效果的评估效能[J]. 实用医学杂志,2024,40(24):3539-3546. |
[3] | 邵志敏,吴炅,江泽飞,等. 中国乳腺癌新辅助治疗专家共识(2022年版) [J]. 中国癌症杂志,2022, 32 (1): 80-89. |
[4] | 肖晶晶,黄美玲,延常姣,等. Her-2阳性乳腺癌新辅助化疗联合靶向治疗获得病理完全缓解的影响因素[J]. 实用医学杂志,2022,38(5):542-546. |
[5] | THERESE B B, BETHANY L N, JENNIFER L B, et al. NCCN Guidelines® Insights: Breast Cancer Screening and Diagnosis, Version 1.2023 [J]. J Natl Compr Canc Netw,2023,21(9):900-909. |
[6] |
LU N, DONG J, FANG X, et al. Predicting pathologic response to neoadjuvant chemotherapy in patients with locally advanced breast cancer using multiparametric MRI [J]. BMC Med Imaging,2021,21(1):1-13. doi:10.1186/s12880-021-00688-z
doi: 10.1186/s12880-021-00688-z |
[7] |
LIANG X, CHEN X, YANG Z, et al. Early prediction of pathological complete response to neoadjuvant chemotherapy combining DCE-MRI and apparent diffusion coefficient values in breast Cancer [J]. BMC Cancer, 2022, 22(1):1250. doi:10.1186/s12885-022-10315-x
doi: 10.1186/s12885-022-10315-x |
[8] |
WANG X, HUA H, HAN J, et al. Evaluation of Multiparametric MRI Radiomics-Based Nomogram in Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer: A Two-Center study [J]. Clin Breast Cancer,2023,23(6):e331-e344. doi:10.1016/j.clbc.2023.05.010
doi: 10.1016/j.clbc.2023.05.010 |
[9] |
SUDHIR R, KOPPULA V C, RAO T S, et al. Accuracy of digital mammography, ultrasound and MRI in predicting the pathological complete response and residual tumor size of breast cancer after completion of neoadjuvant chemotherapy [J]. Indian J Cancer,2022,59(3):345-353. doi:10.4103/ijc.ijc_795_19
doi: 10.4103/ijc.ijc_795_19 |
[10] |
MIN K, TONG L, TANG L, et al. Head-to-head comparison of contrast-enhanced mammography and contrast-enhanced MRI for assessing pathological complete response to neoadjuvant therapy in patients with breast cancer: A meta-analysis [J]. Cancer Treat Res Commun,2023,202(1):1-9. doi:10.1007/s10549-023-07034-7
doi: 10.1007/s10549-023-07034-7 |
[11] |
PENG Y, YUAN F, XIE F, et al. Comparison of automated breast volume scanning with conventional ultrasonography, mammography, and MRI to assess residual breast cancer after neoadjuvant therapy by molecular type [J]. Clin Radiol, 2023,78(5):e393-e400. doi:10.1016/j.crad.2022.12.002
doi: 10.1016/j.crad.2022.12.002 |
[12] |
KO C C, YEH L R, KUO Y T, et al. Imaging biomarkers for evaluating tumor response: RECIST and beyond. [J]. Biomark Res,2021,9(1):52. doi:10.1186/s40364-021-00306-8
doi: 10.1186/s40364-021-00306-8 |
[13] |
LITIÈRE S, BOGAERTS J. Imaging endpoints for clinical trial use: A RECIST perspective [J]. J Immunother Cancer,2022,10(11):e005092. doi:10.1136/jitc-2022-005092
doi: 10.1136/jitc-2022-005092 |
[14] |
GAURAV JYOTI B, AMARTA J, GENIE K C W, et al. Diagnostic accuracy of magnetic resonance imaging to evaluate axillary lymph node status in breast cancer patients receiving neoadjuvant chemotherapy[J].Br J Radiol,2023,96(1143):20220904. doi:10.1259/bjr.20220904
doi: 10.1259/bjr.20220904 |
[15] |
KWON M R, CHU J, KOOK S H, et al. Factors associated with radiologic-pathologic discordance in magnetic resonance imaging after neoadjuvant chemotherapy for breast cancer [J]. Clin Imaging,2022,89:1-9. doi:10.1016/j.clinimag.2022.05.002
doi: 10.1016/j.clinimag.2022.05.002 |
[16] |
KIM Y, SIM S H, PARK B, et al. Criteria for identifying residual tumours after neoadjuvant chemotherapy of breast cancers: A magnetic resonance imaging study [J]. Sci Rep, 2021,11(1):634. doi:10.1038/s41598-020-79743-8
doi: 10.1038/s41598-020-79743-8 |
[17] |
CHANG Y C, HUANG C S, LIU Y J, et al. Angiogenic response of locally advanced breast cancer to neoadjuvant chemotherapy evaluated with parametric histogram from dynamic contrast-enhanced MRI [J]. Phys Med Biol,2004,49(16):3593-3602. doi:10.1088/0031-9155/49/16/007
doi: 10.1088/0031-9155/49/16/007 |
[18] |
SHARMA U, DANISHAD K K, SEENU V, et al. Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy [J]. NMR Biomed,2009,22(1):104-113. doi:10.1002/nbm.1245
doi: 10.1002/nbm.1245 |
[19] |
RAM S. One Size Fits All?-Not Anymore: Personalizing Breast Cancer Treatment with Use of a Semiautomated Functional Tumor Volume-based Predictive Model in the Assessment of Neoadjuvant Therapy Response [J]. Radiol Imaging Cancer,2023,5(4):e230089. doi:10.1148/rycan.230089
doi: 10.1148/rycan.230089 |
[20] | ONISHI N, BARENG T J, GIBBS J, et al. Effect of Longitudinal Variation in Tumor Volume Estimation for MRI-guided Personalization of Breast Cancer Neoadjuvant Treatment [J]. Radiol Imaging Cancer,2023,5(4):e220126. |
[21] |
PANTHI B, ADRADA B E, CANDELARIA R P, et al. Assessment of Response to Neoadjuvant Systemic Treatment in Triple-Negative Breast Cancer Using Functional Tumor Volumes from Longitudinal Dynamic Contrast-Enhanced MRI [J]. Cancers (Basel),2023,15(4):1025. doi:10.3390/cancers15041025
doi: 10.3390/cancers15041025 |
[22] |
SCHWARTZ L H, LITIÈRE S, DE VRIES E, et al. RECIST 1.1-Update and clarification: From the RECIST committee [J]. Eur J Cancer,2016,62:132-137. doi:10.1016/j.ejca.2016.03.081
doi: 10.1016/j.ejca.2016.03.081 |
[23] |
BRUIX J, SHERMAN M, LLOVET J M, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver [J]. J Hepatol,2001,35(3):421-430. doi:10.1016/s0168-8278(01)00130-1
doi: 10.1016/s0168-8278(01)00130-1 |
[24] |
BONEKAMP S, HALAPPA V G, GESCHWIND J F, et al. Unresectable hepatocellular carcinoma: MR imaging after intraarterial therapy. Part II. Response stratification using volumetric functional criteria after intraarterial therapy [J]. Radiology, 2013,268(2):431-439. doi:10.1148/radiol.13122307
doi: 10.1148/radiol.13122307 |
[25] |
CHAPIRO J, LIN M, DURAN R, et al. Assessing tumor response after loco-regional liver cancer therapies: The role of 3D MRI [J]. Expert Rev Anticancer Ther,2015,15(2):199-205. doi:10.1586/14737140.2015.978861
doi: 10.1586/14737140.2015.978861 |
[26] |
ZABOROWSKI A M, WONG S M. Neoadjuvant systemic therapy for breast cancer [J]. Br J Surg,2023,110(7):765-772. doi:10.1093/bjs/znad103
doi: 10.1093/bjs/znad103 |
[27] |
TAMIRISA N, HUNT K K. Neoadjuvant Chemotherapy, Endocrine Therapy, and Targeted Therapy for Breast Cancer: ASCO Guideline [J]. Ann Surg Oncol,2022,29(3):1489-1492. doi:10.1245/s10434-021-11223-3
doi: 10.1245/s10434-021-11223-3 |
[28] |
VAN LA PARRA R F D, CLOUGH K B, THYGESEN H H, et al. Oncological Safety of Oncoplastic Level Ⅱ Mammoplasties After Neoadjuvant Chemotherapy for Large Breast Cancers: A Matched-Cohort Analysis [J]. Ann Surg Oncol, 2021,28(11):5920-5928. doi:10.1245/s10434-021-09829-8
doi: 10.1245/s10434-021-09829-8 |
[29] |
IANNESSI A, BEAUMONT H, LIU Y, et al. RECIST 1.1 and lesion selection: How to deal with ambiguity at baseline? [J]. Insights Imaging,2021,12(1):36. doi:10.1186/s13244-021-00976-w
doi: 10.1186/s13244-021-00976-w |
[30] |
BEAUMONT H, IANNESSI A. Can we predict discordant RECIST 1.1 evaluations in double read clinical trials? [J]. Front Oncol, 2023,13:1239570. doi:10.3389/fonc.2023.1239570
doi: 10.3389/fonc.2023.1239570 |
[31] |
YIN X, HADJILOUCAS S, ZHANG Y, et al. MRI radiogenomics for intelligent diagnosis of breast tumors and accurate prediction of neoadjuvant chemotherapy responses-a review [J]. Comput Methods Programs Biomed,2022,214: 106510. doi:10.1016/j.cmpb.2021.106510
doi: 10.1016/j.cmpb.2021.106510 |
[32] |
LIANG X, CHEN X, YANG Z, et al. Early prediction of pathological complete response to neoadjuvant chemotherapy combining DCE-MRI and apparent diffusion coefficient values in breast Cancer [J]. BMC Cancer,2022,22(1):1250. doi:10.1186/s12885-022-10315-x
doi: 10.1186/s12885-022-10315-x |
[33] |
CHANG Y, HUANG C, LIU Y, et al. Angiogenic response of locally advanced breast cancer to neoadjuvant chemotherapy evaluated with parametric histogram from dynamic contrast-enhanced MRI [J]. Phys Med Biol,2004,49(16):3593-3602. doi:10.1088/0031-9155/49/16/007
doi: 10.1088/0031-9155/49/16/007 |
[34] |
SHARMA U, DANISHAD K, SEENU V, et al. Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy [J]. NMR Biomed,2009,22(1):104-113. doi:10.1002/nbm.1245
doi: 10.1002/nbm.1245 |
[35] |
DESMAISON C, NICCOLI P, OZIEL TAIEB S, et al. Transarterial chemoembolization (TACE) for neuroendocrine liver metastasis (NELM): Predictive value of volumetric arterial enhancement (VAE) on baseline MRI [J]. Bull Cancer, 2023,110(3):308-319. doi:10.1016/j.bulcan.2022.12.007
doi: 10.1016/j.bulcan.2022.12.007 |
[36] |
RAHIMPOUR M, SAINT MARTIN M, FROUIN F, et al. Visual ensemble selection of deep convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast enhanced MRI [J]. Eur Radiol,2023,33(2):959-969. doi:10.1007/s00330-022-09113-7
doi: 10.1007/s00330-022-09113-7 |
[37] |
PARK G, KIM S, NAM Y, et al. 3D Breast Cancer Segmentation in DCE-MRI Using Deep Learning With Weak Annotation [J]. J Magn Reson Imaging,2024,59(6):2252-2262. doi:10.1002/jmri.28960
doi: 10.1002/jmri.28960 |
[38] |
WANG L, LUO R, CHEN Y, et al. Breast Cancer Growth on Serial MRI: Volume Doubling Time Based on 3-Dimensional Tumor Volume Assessment [J]. J Magn Reson Imaging,2023,58(4):1303-1313. doi:10.1002/jmri.28670
doi: 10.1002/jmri.28670 |
[39] |
MARTINCICH L, MONTEMURRO F, DE ROSA G, et al. Monitoring response to primary chemotherapy in breast cancer using dynamic contrast-enhanced magnetic resonance imaging [J]. Breast Cancer Res Treat,2004,83(1):67-76. doi:10.1023/b:brea.0000010700.11092.f4
doi: 10.1023/b:brea.0000010700.11092.f4 |
[40] |
HYLTON N, GATSONIS C, ROSEN M, et al. Neoadjuvant Chemotherapy for Breast Cancer: Functional Tumor Volume by MR Imaging Predicts Recurrence-free Survival-Results from the ACRIN 6657/CALGB 150007 I-SPY 1 TRIAL [J]. Radiology,2016,279(1):44-55. doi:10.1148/radiol.2015150013
doi: 10.1148/radiol.2015150013 |
[41] | GRADISHAR W, MORAN M, ABRAHAM J, et al. Breast Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology [J]. J Natl Compr Canc Netw,2022,20(6): 691-722. |
[42] |
LOIBL S, ANDRÉ F, BACHELOT T, et al. Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up [J]. Ann Oncol,2024,35(2):159-182. doi:10.1016/j.annonc.2023.11.016
doi: 10.1016/j.annonc.2023.11.016 |
[1] | 韩英妹,李一杰,张衡,李伟庆,冯泽,王丰. 深度学习在阿尔茨海默病疾病转化预测影像学研究中的应用价值[J]. 实用医学杂志, 2025, 41(9): 1413-1424. |
[2] | 董魁,吴洁,燕静,刘海涛,王军,乔冠恩. 大肠腺瘤性息肉危险因素及预测模型的构建与验证[J]. 实用医学杂志, 2025, 41(6): 838-845. |
[3] | 李京朔,刘首诗,郭宏伟. 毛兰素诱导乳腺癌细胞凋亡的机制及治疗潜力的研究进展[J]. 实用医学杂志, 2025, 41(14): 2132-2137. |
[4] | 胡作怀,付建东,李小芳,姚欣悦,赵宾,晏涑,何思思. 组织补偿膜使用方式对乳腺癌根治术后胸壁皮肤剂量的影响[J]. 实用医学杂志, 2025, 41(14): 2138-2142. |
[5] | 丘海,归奕飞,刘媛. 术前腋窝超声正常的临床T1—2 N0乳腺癌患者发生前哨淋巴结转移的预测模型[J]. 实用医学杂志, 2025, 41(14): 2143-2151. |
[6] | 江璐,吕伟朋,陈思静,房艳华,梁珊珊. 肿瘤类器官培养体系下维迪西妥单抗对不同人类表皮生长因子受体2表达水平乳腺癌细胞的抑制作用[J]. 实用医学杂志, 2025, 41(12): 1808-1815. |
[7] | 秦晓晓,李晓茁,郭泓利,张利静. 多模态功能磁共振成像联合磁共振波谱对脑胶质瘤术后复发与假性进展鉴别诊断价值[J]. 实用医学杂志, 2025, 41(11): 1736-1741. |
[8] | 邓雅倩,李文肖,徐泽林,马金梅,杜婷婷,刘文,李军. 生长方位量化联合S-Detect技术对乳腺癌腋窝淋巴结转移的预测价值[J]. 实用医学杂志, 2025, 41(1): 100-107. |
[9] | 曾琳钰,陈子明,曾俊卿,鄢毅,张达颖,顾丽丽. 超声测量坐骨神经横截面积在单侧腰椎间盘突出症内镜术后早期疗效评估中的应用[J]. 实用医学杂志, 2025, 41(1): 35-40. |
[10] | 宋子旭,朱光正,郭晨旭,武佳琪,张立功,钱军. SLC35A2、前叶黄素亚基2在乳腺癌中的表达及其与临床观察指标和预后的关系[J]. 实用医学杂志, 2024, 40(4): 496-502. |
[11] | 刘芬,赵辉,郭利敏. 多组学联合检测对乳腺癌临床病理特征、新辅助化疗效果的评估效能[J]. 实用医学杂志, 2024, 40(24): 3539-3546. |
[12] | 赵家瑞,龚玉来. 静息态功能磁共振成像在颞叶癫痫认知损害中的研究进展[J]. 实用医学杂志, 2024, 40(20): 2954-2959. |
[13] | 曾颖华,李文姬,郑莉. 经外周置入中心静脉导管后首次换药时间对乳腺癌术后患者的影响[J]. 实用医学杂志, 2024, 40(19): 2772-2777. |
[14] | 詹银周,陈俊衡,陈超,蔡楚源,马学珠,郭春明. 伤害感受水平指数指导瑞芬太尼输注靶浓度对接受乳腺癌根治术患者细胞免疫和缺氧诱导因子-1α的影响[J]. 实用医学杂志, 2024, 40(18): 2566-2570. |
[15] | 陈车,罗德红,喻皇飞,张琴,胡小池,余盛华,李亚军. 自动勾画技术在全乳内侧瘤床同步推量中的应用[J]. 实用医学杂志, 2024, 40(17): 2406-2411. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||