实用医学杂志 ›› 2025, Vol. 41 ›› Issue (9): 1413-1424.doi: 10.3969/j.issn.1006-5725.2025.09.021
• 综述 • 上一篇
收稿日期:
2024-12-27
出版日期:
2025-05-10
发布日期:
2025-05-20
通讯作者:
王丰
E-mail:wfzmy123@163.com
基金资助:
Yingmei HAN1,Yijie LI1,Heng ZHANG1,Weiqing LI1,Ze FENG1,Feng WANG2()
Received:
2024-12-27
Online:
2025-05-10
Published:
2025-05-20
Contact:
Feng WANG
E-mail:wfzmy123@163.com
摘要:
阿尔茨海默病(Alzheimer's disease, AD)作为一种神经退行性疾病,在无症状阶段脑部便已呈现病理改变。随病理负荷加剧,患者不仅在记忆、语言、空间力、执行力、计算力等多个认知领域出现功能退化,还可能伴有情绪异常。一旦进展为AD,治疗难度极大。因此,早期诊断和精确预测疾病转化成为AD防治的核心任务,也是当前亟待攻克的科研难题。深度学习(deep learning, DL)模型在AD疾病诊断、预测、分类及特征提取等方面展现出不容忽视的优势,为解决这一难题带来新的希望。本研究首先简要介绍了AD疾病的转归和深度学习的基本知识,之后对深度学习在预测疾病转化的影像学研究从两个方面进行概述:一方面总结目前有关AD疾病分类和预测性能创新的深度学习模型;另一方面概述应用于AD诊断、分类和预测方面的深度学习融合模型。最后,本文阐述了此领域研究即将面临的挑战。本文表明深度学习模型是AD研究领域较为前沿的手段。
中图分类号:
韩英妹,李一杰,张衡,李伟庆,冯泽,王丰. 深度学习在阿尔茨海默病疾病转化预测影像学研究中的应用价值[J]. 实用医学杂志, 2025, 41(9): 1413-1424.
Yingmei HAN,Yijie LI,Heng ZHANG,Weiqing LI,Ze FENG,Feng WANG. The application value of deep learning in imaging studies for predicting the conversion of Alzheimer′s disease[J]. The Journal of Practical Medicine, 2025, 41(9): 1413-1424.
表1
CNN的融合模型研究"
融合模型 | 数据集 | 样本 | 结果 | 图像 | 可解释性 | ||
---|---|---|---|---|---|---|---|
AD | MCI | HC | |||||
CNN-CNN[ | ADNI | 171 | 545 | 580 | 三元多类(AD、MCI、HC)准确率99.43%;四元多类(AD、HC、LMCI、EMCI)准确率99.57%;五元多类(AD、HC、LMCI、EMCI、MCI)准确率99.13% | MRI | 有 |
CNN-MLP[ | ADNI | - | - | - | AD-MCI、AD-HC、MCI-HC分类准确率分别为72.5%、85%、75% | MRI | - |
CNN-LSTM[ | - | - | - | - | 模型分类准确率高达98.5% | MRI | 有 |
FMCNN(CNN-FCN)[ | - | - | - | - | 依据DTI图像WM特性准确诊断AD和MCI(准确率高达96.95%),除却分类诊断功能,还可基于确定性纤维追踪生成的光纤概率图来评估AD和MCI风险状态 | DTI | - |
CNN(ResNet、Xception和InceptionV3)-TL[ | ADNI、OASIS、AIBL | 94、15、15 | 126、0、30 | 85、15、15 | 分类任务的准确率均在90%以上,但是InceptionV3-TL模型分类性能表现最优 | MRI | 有 |
CNN-TL[ | 意大利摩德纳大学医院、牛津磁共振中心 | 12 | 61 | - | 该模型对于DL-TL临床应用的广泛开展具有重要意义,提高海马体积的精度测量,验证MCI阶段小海马异常的结论 | MRI | 有 |
CNN-TL(ResNet50)[ | ADNI | 1 406 | - | 2 084 | 该模型的分类准确率82.4%,预测值与临床评分存在相关性,可预测个体未来认知能力下降状态 | sMRI、临床评分 | |
A3C-TL-GTO[ | ADNI、AD数据集 | 17 976 | 138 105 | 70 076 | 该模型对ADNI数据集疾病分类的准确率达96.25%;AD数据集分类准确率96.65% | MRI |
表2
基于生成对抗网络(GAN)的创新模型研究"
创新模型 | 数据集 | 样本 | 结果 | 影像 | 文献 | ||
---|---|---|---|---|---|---|---|
AD | MCI | HC | |||||
DeepCGAN | ADNI | 3 370 | - | 1 643 | 准确率97.3%;AUC99.51% | - | [ |
DeepCGAN | ADNI | 30 | 64 | 42 | 准确率72%;AD的PSNR82分;SSIM25.6分 | PET | [ |
3D-DCGAN | ADNI | 187 | 382 | 229 | 准确率:AD-HC 92.8%、AD-MCI78.1%、MCI-HC76.4%,解决掉过拟合问题 | sMRI | [ |
ATAT | ADNI | - | 162 | 86 | ATAT模型为脑功能网络提供新视角,可评估不同阶段与疾病相关的影像特征 | fMRI | [ |
HSIA-GAN | ADNI | 233 | 400 | 阶段诊断率74.2%;风险预测84.5% | sMRI/fMRI/DTI | [ | |
注意力引导的GAN | ADNI、AIBL、OASIS | 329、628、47 | - | 687、0、188 | 准确率84.79% | 3D-MRI | [ |
GANCMLAE | ADNI | 292 | 309 | 712 | SSIM、PSNR以及MSE指标具有较好性能,AD-HC和MCI-HC的ROC分别是86.7%和75.2% | sMRI | [ |
3D-cGAN、LM3IL | ADNI | 358 | 670 | 429 | 在AD诊断方面优于最先进的方法 | PET/MRI | [ |
多尺度多类型特征生成对抗性深度神经网络 | ADNI、NIFD | 459 | - | 1 063 | 准确率88.28% | sMRI | [ |
表3
视觉转换器(ViT)融合模型研究"
模型 | 数据集 | 样本 | 结果 | 影像 | 文献 |
---|---|---|---|---|---|
Hybrid-ViT (ResNet-50和ViT) | OASIS | AD有64例,HC有86例 | 在训练期间准确率97%,验证数据集准确率94%,该模型优于先进模型(如ViT模型) | MRI | [ |
SSL-ViT-DINO-ELM | ADNI | MCI共469例 | 该模型准确率92.31%,特异度90.21%,敏感度95.50%。融合SSL、DINO、ELM以及注意力机制,使该模型更具有预测性和可解释性 | PET | [ |
MC-ViT | ADNI、OASIS-3 | ADNI数据集共7 199例,OASIS-3共1 992例 | 该模型克服了3D补丁卷积神经网络的局限性,通过最低成本,对AD分类准确率90%,超过2D和3DCNN模型 | MRI | [ |
ViT-集成技术 | ADNI、OASIS | ADNI共1 056,其中AD223,MCI737,HC96;OASIS共6 400,非痴呆3 200,非常轻度痴呆症2 240,轻度痴呆症896,中度痴呆症64 | ViT-集成技术分类准确性86%,成为CNN等传统模型的替代方案,通过多头注意力机制,在多个数据集中表现出较高的分类精度,模型具有可解释性。 | MRI | [ |
ViT-CsAGP | ADNI | - | 该模型的AD-HC、AD-MCI、HC-MCI、AD-HC-MCI的分类准确率分别受99.04%、97.43%、98.57%、98.72%。通过土池算法Reshape-Pooling-Reshape (RPR)减少模型的令牌冗余 | PET/MRI | [ |
3D-ViTs-DBN | ADNI | AD有117例,MCI有247例,HC有168例 | 模型与基于感兴趣区的分析方法提取特定大脑区域特征,并用DBN模型进行预测。该模型的准确性、可解释性以及分类性能均表现良好 | MRI | [ |
VECNN | ADNI | ADNI数据集中共2248张3DMRI图像 | 该模型在区分AD、MCI、HC的准确率达92.14%,敏感度93.27%,特异度89.95% | 3DMRI | [ |
表4
多层感知器(MLP)融合模型"
模型 | 数据集 | 样本 | 结果 | 数据 | 可解释性 |
---|---|---|---|---|---|
MLP-RNN(LSTM)[ | ADNI | AD200; MCI400; HC200 | 该模型可作为预测AD进展的有效工具。在预测评估受试者未来2年认知状态正常准确率为84.62%,未来2年认知状态异常准确率78.9%;未来4年认知状态正常准确率为83.33%,未来4年认知状态异常准确率为82.8% | 临床评分 | 有 |
MLP-GNN[ | ADNI | 1092 | 该模型分类性能准确率90.18%,还可以根据MRI图像衍生出FDG-PET图像并进行分析 | MRI、PET | 进行10倍交叉验证,具有可解释性 |
MLP-CNN[ | ADNI | - | AD诊断准确率98.61%,MCI-AD预测准确率高达84.49%。可准确诊断AD并预测MCI转化 | MRI | 有 |
MLP-CNN[ | ADNI | - | 该模型对AD-MCI和MCI-HC的分类准确率分别是93%和82.4% | MRI、临床数据以及APOE遗传数据 | 引入双注意力机制,增加模型可解释性 |
MLP-AlexNet[ | ADNI、 OASIS、 EEG | - | 在EEG数据集,该模型分类准确率97.71%;在ADNI数据集,该模型分类准确率92.59% | MRI、临床数据 | 具有可解释性 |
MLP-AD_Net(阿尔茨海默病 定向预测3D卷积模型)[ | ADNI | - | 该模型的准确率89%,预测性能良好且稳定 | MRI、临床数据 | 引入注意力机制,模型具有可解释性 |
MLP-FCN[ | ADNI | AD307、 HC243 | 注意力机制、FCN和MLP的融合应用可获取精确的疾病概率图特征信息,提升模型的分类性能 | 3D-MRI | 引入注意力机制,模型具有可解释性 |
1 |
CHU C S, WANG D Y, LIANG C K, et al. Automated Video Analysis of Audio-Visual Approaches to Predict and Detect Mild Cognitive Impairment and Dementia in Older Adults[J]. J Alzheimers Dis, 2023, 92(3): 875-886. doi:10.3233/jad-220999
doi: 10.3233/jad-220999 |
2 | YIN C, IMMS P, CHENG M, et al. Anatomically interpretable deep learning of brain age captures domain-specific cognitive impairment[J]. Proc Natl Acad Sci U S A, 2023, 120(2): e2214634120. |
3 |
KAM T E, ZHANG H, JIAO Z, et al. Deep Learning of Static and Dynamic Brain Functional Networks for Early MCI Detection[J]. IEEE Trans Med Imaging, 2020, 39(2): 478-487. doi:10.1109/tmi.2019.2928790
doi: 10.1109/tmi.2019.2928790 |
4 |
MORA-RUBIO A, BRAVO-ORTIZ M A, QUINONES ARREDONDO S, et al. Classification of Alzheimer's disease stages from magnetic resonance images using deep learning[J]. PeerJ Comput Sci, 2023, 9: e1490. doi:10.7717/peerj-cs.1490
doi: 10.7717/peerj-cs.1490 |
5 |
郭润财, 王蕾, 黄振国, 等. 基于从头训练模式深度学习卷积神经网络模型评估急性肺栓塞的价值[J]. 实用医学杂志, 2023, 39(22): 2979-2983. doi:10.3969/j.issn.1006-5725.2023.22.021
doi: 10.3969/j.issn.1006-5725.2023.22.021 |
6 |
李欣雨, 吴洋, 张红梅, 等. 深度学习技术在超声心动图图像质量控制中的应用[J]. 实用医学杂志, 2024, 40(1): 108-113. doi:10.3969/j.issn.1006-5725.2024.01.019
doi: 10.3969/j.issn.1006-5725.2024.01.019 |
7 |
谭立玮, 张淑军, 韩琪, 等. 面向医学影像报告生成的门归一化编解码网络[J]. 智能系统学报, 2024, 19(2): 411-419. doi:10.11992/tis.202207013
doi: 10.11992/tis.202207013 |
8 | 韩英妹, 李一杰, 张衡, 等. 基于MRI分析阿尔茨海默病大尺度脑网络研究进展[J]. 实用医学杂志, 2024, 40(4): 575-579. |
9 |
曾安, 贾龙飞, 潘丹, 等. 基于卷积神经网络和集成学习的阿尔茨海默症早期诊断[J]. 生物医学工程学杂志, 2019, 36(5): 711-719. doi:10.7507/1001-5515.201809040
doi: 10.7507/1001-5515.201809040 |
10 |
OLAIMAT M AL, MARTINEZ J, SAEED F, et al. PPAD: a deep learning architecture to predict progression of Alzheimer's disease[J]. Bioinformatics, 2023, 39(39 ): i149-i157. doi:10.1093/bioinformatics/btad249
doi: 10.1093/bioinformatics/btad249 |
11 |
GKENIOS G, LATSIOU K, DIAMANTARAS K, et al. Diagnosis of Alzheimer's disease and Mild Cognitive Impairment using EEG and Recurrent Neural Networks[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2022, 2022: 3179-3182. doi:10.1109/embc48229.2022.9871302
doi: 10.1109/embc48229.2022.9871302 |
12 |
ALESSANDRINI M, BIAGETTI G, CRIPPA P, et al. EEG-Based Alzheimer's Disease Recognition Using Robust-PCA and LSTM Recurrent Neural Network[J]. Sensors (Basel), 2022, 22(10):3696. doi:10.3390/s22103696
doi: 10.3390/s22103696 |
13 |
NARASIMHAN R, GOPALAN M, SIKKANDAR M Y, et al. Employing Deep-Learning Approach for the Early Detection of Mild Cognitive Impairment Transitions through the Analysis of Digital Biomarkers[J]. Sensors (Basel), 2023, 23(21):8867. doi:10.3390/s23218867
doi: 10.3390/s23218867 |
14 |
AQEEL A, HASSAN A, KHAN M A, et al. A Long Short-Term Memory Biomarker-Based Prediction Framework for Alzheimer's Disease[J]. Sensors (Basel), 2022, 22(4):1475. doi:10.3390/s22041475
doi: 10.3390/s22041475 |
15 |
FARHATULLAH, CHEN X, ZENG D, et al. A deep learning approach for non-invasive Alzheimer's monitoring using microwave radar data[J]. Neural Netw, 2024, 181: 106778. doi:10.1016/j.neunet.2024.106778
doi: 10.1016/j.neunet.2024.106778 |
16 |
QIU S, JOSHI P S, MILLER M I, et al. Development and validation of an interpretable deep learning framework for Alzheimer's disease classification[J]. Brain, 2020, 143(6): 1920-1933. doi:10.1093/brain/awaa137
doi: 10.1093/brain/awaa137 |
17 |
AHMED G, ER M J, FAREED M M S, et al. DAD-Net: Classification of Alzheimer's Disease Using ADASYN Oversampling Technique and Optimized Neural Network[J]. Molecules, 2022, 27(20):7085. doi:10.3390/molecules27207085
doi: 10.3390/molecules27207085 |
18 |
WANG B, LIM J S. Zoom-In Neural Network Deep-Learning Model for Alzheimer's Disease Assessments[J]. Sensors (Basel), 2022, 22(22):8887. doi:10.3390/s22228887
doi: 10.3390/s22228887 |
19 |
YAN H, MUBONANYIKUZO V, KOMOLAFE T E, et al. Hybrid-RViT: Hybridizing ResNet-50 and Vision Transformer for Enhanced Alzheimer's disease detection[J]. PLoS One, 2025, 20(2): e0318998. doi:10.1371/journal.pone.0318998
doi: 10.1371/journal.pone.0318998 |
20 |
ALP S, AKAN T, BHUIYAN M S, et al. Joint transformer architecture in brain 3D MRI classification: its application in Alzheimer's disease classification[J]. Sci Rep, 2024, 14(1): 8996. doi:10.1038/s41598-024-59578-3
doi: 10.1038/s41598-024-59578-3 |
21 |
QU C, ZOU Y, MA Y, et al. Diagnostic Performance of Generative Adversarial Network-Based Deep Learning Methods for Alzheimer's Disease: A Systematic Review and Meta-Analysis[J]. Front Aging Neurosci, 2022, 14: 841696. doi:10.3389/fnagi.2022.841696
doi: 10.3389/fnagi.2022.841696 |
22 |
QIU S, MILLER M I, JOSHI P S, et al. Multimodal deep learning for Alzheimer's disease dementia assessment[J]. Nat Commun, 2022, 13(1): 3404. doi:10.1038/s41467-022-31037-5
doi: 10.1038/s41467-022-31037-5 |
23 |
LOGAN R, WILLIAMS B G, FERREIRA DA SILVA M, et al. Deep Convolutional Neural Networks With Ensemble Learning and Generative Adversarial Networks for Alzheimer's Disease Image Data Classification[J]. Front Aging Neurosci, 2021, 13: 720226. doi:10.3389/fnagi.2021.720226
doi: 10.3389/fnagi.2021.720226 |
24 |
CHEN X, TANG M, LIU A, et al. Diagnostic accuracy study of automated stratification of Alzheimer's disease and mild cognitive impairment via deep learning based on MRI[J]. Ann Transl Med, 2022, 10(14): 765. doi:10.21037/atm-22-2961
doi: 10.21037/atm-22-2961 |
25 |
KANG L, JIANG J, HUANG J, et al. Identifying Early Mild Cognitive Impairment by Multi-Modality MRI-Based Deep Learning[J]. Front Aging Neurosci, 2020, 12: 206. doi:10.3389/fnagi.2020.00206
doi: 10.3389/fnagi.2020.00206 |
26 |
JIANG J, KANG L, HUANG J, et al. Deep learning based mild cognitive impairment diagnosis using structure MR images[J]. Neurosci Lett, 2020, 730: 134971. doi:10.1016/j.neulet.2020.134971
doi: 10.1016/j.neulet.2020.134971 |
27 |
EL-ASSY A M, AMER H M, IBRAHIM H M, et al. A novel CNN architecture for accurate early detection and classification of Alzheimer's disease using MRI data[J]. Sci Rep, 2024, 14(1): 3463. doi:10.1038/s41598-024-53733-6
doi: 10.1038/s41598-024-53733-6 |
28 |
SO J H, MADUSANKA N, CHOI H K, et al. Deep Learning for Alzheimer's Disease Classification using Texture Features[J]. Curr Med Imaging Rev, 2019, 15(7): 689-698. doi:10.2174/1573405615666190404163233
doi: 10.2174/1573405615666190404163233 |
29 |
BALAJI P, CHAURASIA M A, BILFAQIH S M, et al. Hybridized Deep Learning Approach for Detecting Alzheimer's Disease[J]. Biomedicines, 2023, 11(1):149. doi:10.3390/biomedicines11010149
doi: 10.3390/biomedicines11010149 |
30 |
DENG L, WANG Y, Alzheimer's Disease Neuroimaging I. Fully Connected Multi-Kernel Convolutional Neural Network Based on Alzheimer's Disease Diagnosis[J]. J Alzheimers Dis, 2023, 92(1): 209-228. doi:10.3233/jad-220519
doi: 10.3233/jad-220519 |
31 |
GHAFFARI H, TAVAKOLI H, PIRZAD JAHROMI G. Deep transfer learning-based fully automated detection and classification of Alzheimer's disease on brain MRI[J]. Br J Radiol, 2022, 95(1136): 20211253. doi:10.1259/bjr.20211253
doi: 10.1259/bjr.20211253 |
32 |
BALBONI E, NOCETTI L, CARBONE C, et al. The impact of transfer learning on 3D deep learning convolutional neural network segmentation of the hippocampus in mild cognitive impairment and Alzheimer disease subjects[J]. Hum Brain Mapp, 2022, 43(11): 3427-3438. doi:10.1002/hbm.25858
doi: 10.1002/hbm.25858 |
33 |
BAE J, STOCKS J, HEYWOOD A, et al. Transfer learning for predicting conversion from mild cognitive impairment to dementia of Alzheimer's type based on a three-dimensional convolutional neural network[J]. Neurobiol Aging, 2021, 99: 53-64. doi:10.1016/j.neurobiolaging.2020.12.005
doi: 10.1016/j.neurobiolaging.2020.12.005 |
34 |
BAGHDADI N A, MALKI A, BALAHA H M, et al. A(3)C-TL-GTO: Alzheimer Automatic Accurate Classification Using Transfer Learning and Artificial Gorilla Troops Optimizer[J]. Sensors (Basel), 2022, 22(11):4250. doi:10.3390/s22114250
doi: 10.3390/s22114250 |
35 |
JIN L, ZHAO K, ZHAO Y, et al. A Hybrid Deep Learning Method for Early and Late Mild Cognitive Impairment Diagnosis With Incomplete Multimodal Data[J]. Front Neuroinform, 2022, 16: 843566. doi:10.3389/fninf.2022.843566
doi: 10.3389/fninf.2022.843566 |
36 |
ALI I, SALEEM N, ALHUSSEIN M, et al. DeepCGAN: early Alzheimer's detection with deep convolutional generative adversarial networks[J]. Front Med (Lausanne), 2024, 11: 1443151. doi:10.3389/fmed.2024.1443151
doi: 10.3389/fmed.2024.1443151 |
37 |
SAJJAD M, RAMZAN F, KHAN M U G, et al. Deep convolutional generative adversarial network for Alzheimer's disease classification using positron emission tomography (PET) and synthetic data augmentation[J]. Microsc Res Tech, 2021, 84(12): 3023-3034. doi:10.1002/jemt.23861
doi: 10.1002/jemt.23861 |
38 |
KANG W, LIN L, SUN S, et al. Three-round learning strategy based on 3D deep convolutional GANs for Alzheimer's disease staging[J]. Sci Rep, 2023, 13(1): 5750. doi:10.1038/s41598-023-33055-9
doi: 10.1038/s41598-023-33055-9 |
39 |
ZUO Q, LU L, WANG L, et al. Constructing brain functional network by Adversarial Temporal-Spatial Aligned Transformer for early AD analysis[J]. Front Neurosci, 2022, 16: 1087176. doi:10.3389/fnins.2022.1087176
doi: 10.3389/fnins.2022.1087176 |
40 |
BI X A, WANG Y, LUO S, et al. Hypergraph Structural Information Aggregation Generative Adversarial Networks for Diagnosis and Pathogenetic Factors Identification of Alzheimer's Disease With Imaging Genetic Data[J]. IEEE Trans Neural Netw Learn Syst, 2024, 35(6): 7420-7434. doi:10.1109/tnnls.2022.3212700
doi: 10.1109/tnnls.2022.3212700 |
41 |
SINHA S, THOMOPOULOS S I, LAM P, et al. Alzheimer's Disease Classification Accuracy is Improved by MRI Harmonization based on Attention-Guided Generative Adversarial Networks[J]. Proc SPIE Int Soc Opt Eng, 2021, 12088. doi:10.1117/12.2606155
doi: 10.1117/12.2606155 |
42 |
SHI R, SHENG C, JIN S, et al. Generative adversarial network constrained multiple loss autoencoder: A deep learning-based individual atrophy detection for Alzheimer's disease and mild cognitive impairment[J]. Hum Brain Mapp, 2023, 44(3): 1129-1146. doi:10.1002/hbm.26146
doi: 10.1002/hbm.26146 |
43 |
PAN Y, LIU M, LIAN C, et al. Synthesizing Missing PET from MRI with Cycle-consistent Generative Adversarial Networks for Alzheimer's Disease Diagnosis[J]. Med Image Comput Comput Assist Interv, 2018, 11072: 455-463. doi:10.1007/978-3-030-00931-1_52
doi: 10.1007/978-3-030-00931-1_52 |
44 |
MA D, LU D, POPURI K, et al. Differential Diagnosis of Frontotemporal Dementia, Alzheimer's Disease, and Normal Aging Using a Multi-Scale Multi-Type Feature Generative Adversarial Deep Neural Network on Structural Magnetic Resonance Images[J]. Front Neurosci, 2020, 14: 853. doi:10.3389/fnins.2020.00853
doi: 10.3389/fnins.2020.00853 |
45 |
HOANG G M, KIM U H, KIM J G. Vision transformers for the prediction of mild cognitive impairment to Alzheimer's disease progression using mid-sagittal sMRI[J]. Front Aging Neurosci, 2023, 15: 1102869. doi:10.3389/fnagi.2023.1102869
doi: 10.3389/fnagi.2023.1102869 |
46 |
KHATRI U, KWON G R. Explainable Vision Transformer with Self-Supervised Learning to Predict Alzheimer's Disease Progression Using 18F-FDG PET[J]. Bioengineering (Basel), 2023, 10(10). doi:10.3390/bioengineering10101225
doi: 10.3390/bioengineering10101225 |
47 |
HUANG F, QIU A. Ensemble Vision Transformer for Dementia Diagnosis[J]. IEEE J Biomed Health Inform, 2024, 28(9): 5551-5561. doi:10.1109/jbhi.2024.3412812
doi: 10.1109/jbhi.2024.3412812 |
48 |
SHAFFI N, VISWAN V, MAHMUD M. Ensemble of vision transformer architectures for efficient Alzheimer's Disease classification[J]. Brain Inform, 2024, 11(1): 25. doi:10.1186/s40708-024-00238-7
doi: 10.1186/s40708-024-00238-7 |
49 |
TANG C, WEI M, SUN J, et al. CsAGP: Detecting Alzheimer's disease from multimodal images via dual-transformer with cross-attention and graph pooling[J]. J King Saud Univ Comput Inf Sci, 2023, 35(7): 101618. doi:10.1016/j.jksuci.2023.101618
doi: 10.1016/j.jksuci.2023.101618 |
50 |
SAOUD L S, ALMARZOUQI H. Explainable early detection of Alzheimer's disease using ROIs and an ensemble of 138 3D vision transformers[J]. Sci Rep, 2024, 14(1): 27756. doi:10.1038/s41598-024-76313-0
doi: 10.1038/s41598-024-76313-0 |
51 |
ZHAO Z, YEOH P S Q, ZUO X, et al. Vision transformer-equipped Convolutional Neural Networks for automated Alzheimer's disease diagnosis using 3D MRI scans[J]. Front Neurol, 2024, 15: 1490829. doi:10.3389/fneur.2024.1490829
doi: 10.3389/fneur.2024.1490829 |
52 |
HONG X, HUANG K, LIN J, et al. Combined Multi-Atlas and Multi-Layer Perception for Alzheimer's Disease Classification[J]. Front Aging Neurosci, 2022, 14: 891433. doi:10.3389/fnagi.2022.891433
doi: 10.3389/fnagi.2022.891433 |
53 |
ALMUBARK I, CHANG L C, SHATTUCK K F, et al. A 5-min Cognitive Task With Deep Learning Accurately Detects Early Alzheimer's Disease[J]. Front Aging Neurosci, 2020, 12: 603179. doi:10.3389/fnagi.2020.603179
doi: 10.3389/fnagi.2020.603179 |
54 |
MUKHERJI D, MUKHERJI M, MUKHERJI N, et al. Early detection of Alzheimer's disease using neuropsychological tests: a predict-diagnose approach using neural networks[J]. Brain Inform, 2022, 9(1): 23. doi:10.1186/s40708-022-00169-1
doi: 10.1186/s40708-022-00169-1 |
55 |
CHEN K, WENG Y, HOSSEINI A A, et al. A comparative study of GNN and MLP based machine learning for the diagnosis of Alzheimer's Disease involving data synthesis[J]. Neural Netw, 2024, 169: 442-452. doi:10.1016/j.neunet.2023.10.040
doi: 10.1016/j.neunet.2023.10.040 |
56 |
LI M, JIANG Y, LI X, et al. Ensemble of convolutional neural networks and multilayer perceptron for the diagnosis of mild cognitive impairment and Alzheimer's disease[J]. Med Phys, 2023, 50(1): 209-225. doi:10.1002/mp.15985
doi: 10.1002/mp.15985 |
57 |
QIANG Y R, ZHANG S W, LI J N, et al. Diagnosis of Alzheimer's disease by joining dual attention CNN and MLP based on structural MRIs, clinical and genetic data[J]. Artif Intell Med, 2023, 145: 102678. doi:10.1016/j.artmed.2023.102678
doi: 10.1016/j.artmed.2023.102678 |
58 |
FARHATULLAH, CHEN X, ZENG D, et al. 3-Way hybrid analysis using clinical and magnetic resonance imaging for early diagnosis of Alzheimer's disease[J]. Brain Res, 2024, 1840: 149021. doi:10.1016/j.brainres.2024.149021
doi: 10.1016/j.brainres.2024.149021 |
59 |
YAO M, LIU J, PU Y, et al. Multi-class Prediction of Cognitively Normal / Mild Cognitive Impairment / Alzheimer's Disease Status in Dementia Based on Convolutional Neural Networks with Attention Mechanism[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2024, 2024: 1-7. doi:10.1109/embc53108.2024.10781557
doi: 10.1109/embc53108.2024.10781557 |
60 | 颜彬. 基于注意力机制与全卷积网络的阿尔茨海默病分类方法研究[D]. 杭州:浙江理工大学,2023. |
[1] | 胡高凯,牛亚楠,龚玉康,胡阳,徐瑞轩,高文山. 深度学习在腰椎疾病诊断、手术规划及术后预测中的应用研究进展[J]. 实用医学杂志, 2025, 41(6): 921-928. |
[2] | 李荣鑫,黄丽,曾悦阳,张淑慧,陈怡然,刘玉丽,马铁明. 基于NF-κB/NLRP3/Caspase-1信号通路探讨电针改善阿尔茨海默病模型大鼠认知功能障碍的机制[J]. 实用医学杂志, 2025, 41(3): 322-329. |
[3] | 胡希,李艳,刘洋. 深度学习在辅助生殖技术领域的应用进展[J]. 实用医学杂志, 2024, 40(7): 893-897. |
[4] | 韩英妹,李一杰,张衡,吕静,张仪,乔英博,林楠,徐慧勇,王丰. 基于MRI分析阿尔茨海默病大尺度脑网络研究进展[J]. 实用医学杂志, 2024, 40(4): 575-579. |
[5] | 赵家瑞,龚玉来. 静息态功能磁共振成像在颞叶癫痫认知损害中的研究进展[J]. 实用医学杂志, 2024, 40(20): 2954-2959. |
[6] | 向佳,陈茜彤,卢颖欣,郑思捷,黄俊杰,陈莹莹,黄绥丹,陈淮. 基于深度学习在弥漫性囊腔性肺疾病分类中的应用[J]. 实用医学杂志, 2024, 40(19): 2747-2754. |
[7] | 王頔,廖旦,刘远成,徐睿,段庆红. 基于静息态磁共振分析首发抑郁症伴童年创伤全脑局部一致性变化[J]. 实用医学杂志, 2024, 40(16): 2311-2315. |
[8] | 吕悦,路会景,张娟娟. MRI-DWI联合超声声衰减成像诊断脂肪肝背景下< 2 cm局灶结节性病变的价值[J]. 实用医学杂志, 2024, 40(15): 2148-2153. |
[9] | 曾志明,朱攀,马德财,邸小慧,李桂婷,邹文彬,潘希敏. 联合术前MRI和术后病理评估淋巴结转移在直肠癌患者预后预测中的价值[J]. 实用医学杂志, 2024, 40(11): 1560-1567. |
[10] | 申杰,徐桂华. 阿尔茨海默病与血脑屏障的相关性研究进展[J]. 实用医学杂志, 2024, 40(11): 1602-1606. |
[11] | 梁璇,慕静然,骆延,徐陶,曾俊伟. CRMP2磷酸化参与阿尔茨海默病的机制研究进展[J]. 实用医学杂志, 2024, 40(10): 1467-1472. |
[12] | 李欣雨,吴洋,张红梅,尹立雪,彭博,谢盛华. 深度学习技术在超声心动图图像质量控制中的应用[J]. 实用医学杂志, 2024, 40(1): 108-113. |
[13] | 郭润财,王蕾,黄振国,席霖枫,张帅,刘敏. 基于从头训练模式深度学习卷积神经网络模型评估急性肺栓塞的价值[J]. 实用医学杂志, 2023, 39(22): 2979-2983. |
[14] | 黄东莹,吕彩条,李柘坤,龙启佳,郑金瓯. 抗N-甲基-D-天冬氨酸受体脑炎伴认知损伤患者的脑功能低频振幅及局部一致性的变化[J]. 实用医学杂志, 2023, 39(20): 2603-2607. |
[15] | 陈科第,张熙明. 慢性乙型肝炎患者骨质疏松性椎体压缩骨折的危险因素及腰椎椎旁肌肉的MRI表现[J]. 实用医学杂志, 2023, 39(20): 2643-2650. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||