实用医学杂志 ›› 2024, Vol. 40 ›› Issue (7): 1023-1028.doi: 10.3969/j.issn.1006-5725.2024.07.025
收稿日期:
2023-10-22
出版日期:
2024-04-10
发布日期:
2024-04-08
通讯作者:
冯晓东
E-mail:fxd0502@163.com
基金资助:
Lulu CHEN1,Meng LUO1,Kaiqi SU2,Jing GAO2,Xiaodong. FENG2()
Received:
2023-10-22
Online:
2024-04-10
Published:
2024-04-08
Contact:
Xiaodong. FENG
E-mail:fxd0502@163.com
摘要:
卒中后认知障碍(PSCI)指由卒中引起的一系列认知受损的临床综合征。尽管目前尚不清楚其具体的发病机制,但不少研究已证实内质网-线粒体间的交互串扰作为细胞内信号转导和物质代谢的关键枢纽,其调控的Ca2+稳态、脂质代谢、线粒体动力学、自噬、神经炎症等多种生物学过程与PSCI的发生发展密切相关。因此,本文将对内质网-线粒体互作的生物学功能进行综述,并探讨其在PSCI中的具体作用,以发现新的治疗靶点,为今后PSCI靶向药物的开发提供新的理论依据和参考。
中图分类号:
陈露露,罗萌,苏凯奇,高静,冯晓东. 内质网-线粒体互作在卒中后认知障碍中的研究进展[J]. 实用医学杂志, 2024, 40(7): 1023-1028.
Lulu CHEN,Meng LUO,Kaiqi SU,Jing GAO,Xiaodong. FENG. Research progress of the endoplasmic reticulum⁃mitochondrial interactions in post⁃stroke cognitive impairment[J]. The Journal of Practical Medicine, 2024, 40(7): 1023-1028.
表 1
内质网-线粒体互作的生物学功能及其相关蛋白"
内质网-线粒体 互作的生物学功能 | 相关蛋白 | 具体作用 | 参考文献 |
---|---|---|---|
Ca+运输 | VDAC1 | 线粒体的钙摄取通道 | [ |
IP3R | 内质网的钙释放通道 | ||
Grp75 | 连接线粒体外膜上的VDAC1与内质网上的IP3R,介导两者间的钙转移 | ||
VAPB/PTPIP51 | 连接内质网与线粒体介导两者间的钙转移 | [ | |
Sig-1R | 可延长从内质网到线粒体的Ca2+信号传导 | [ | |
脂质代谢 | PSS | 催化磷脂酰丝氨酸合成的关键酶 | [ |
ACAT1 | 催化游离胆固醇转化为胆固醇酯 | [ | |
线粒体动力学 | OPA1 | 参与线粒体内膜的融合 | [ |
Mfn2 | 参与线粒体外膜的融合 | ||
Drp1 | 线粒体分裂的启动蛋白 | [ | |
Fis1 | 与Drp1协作共同参与线粒体分裂 | ||
自噬 | Beclin1 | 自噬形成的关键蛋白 | [ |
ATG5/9/14 | 调节自噬前体的形成并作为自噬标记物 | [ | |
Stx17 | 与ATG14相互作用,参与自噬小体的形成 | [ | |
PINK1/Parkin | 介导线粒体自噬 | [ | |
炎症 | NLRP3 | 形成多分子NIRP3炎性复合体介导炎症的发生 | [ |
1 | 汪凯,董强. 卒中后认知障碍管理专家共识[J]. 中国卒中杂志, 2021,16(4):376-389. |
2 |
ROST N S, BRODTMANN A, PASE M P, et al. Post-Stroke Cognitive Impairment and Dementia[J]. Circ Res, 2022,130(8):1252-1271. doi:10.1161/circresaha.122.319951
doi: 10.1161/circresaha.122.319951 |
3 |
MIJAJLOVIĆ M D, PAVLOVIĆ A, BRAININ M, et al. Post-stroke dementia - a comprehensive review[J]. BMC Med, 2017,15(1):11. doi:10.1186/s12916-017-0779-7
doi: 10.1186/s12916-017-0779-7 |
4 |
NUNNARI J, SUOMALAINEN A. Mitochondria: in sickness and in health[J]. Cell, 2012,148(6):1145-1159. doi:10.1016/j.cell.2012.02.035
doi: 10.1016/j.cell.2012.02.035 |
5 |
ZHANG P, KONJA D, ZHANG Y, et al. Communications between Mitochondria and Endoplasmic Reticulum in the Regulation of Metabolic Homeostasis[J]. Cells, 2021,10(9):2195. doi:10.3390/cells10092195
doi: 10.3390/cells10092195 |
6 |
ROWLAND A A, VOELTZ G K. Endoplasmic reticulum-mitochondria contacts: function of the junction[J]. Nat Rev Mol Cell Biol, 2012,13(10):607-625. doi:10.1038/nrm3440
doi: 10.1038/nrm3440 |
7 |
ERPAPAZOGLOU Z, MOUTON-LIGER F, CORTI O. From dysfunctional endoplasmic reticulum-mitochondria coupling to neurodegeneration[J]. Neurochem Int, 2017,109:171-183. doi:10.1016/j.neuint.2017.03.021
doi: 10.1016/j.neuint.2017.03.021 |
8 |
LIU J, YANG J. Mitochondria-associated membranes: A hub for neurodegenerative diseases[J]. Biomed Pharmacother, 2022,149:112890. doi:10.1016/j.biopha.2022.112890
doi: 10.1016/j.biopha.2022.112890 |
9 |
SILVA BSC, DIGIOVANNI L, KUMAR R, et al. Maintaining social contacts: The physiological relevance of organelle interactions[J]. Biochim Biophys Acta Mol Cell Res, 2020,1867(11):118800. doi:10.1016/j.bbamcr.2020.118800
doi: 10.1016/j.bbamcr.2020.118800 |
10 |
COPELAND D E, DALTON A J. An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost[J]. J Biophys Biochem Cytol, 1959,5(3):393-396. doi:10.1083/jcb.5.3.393
doi: 10.1083/jcb.5.3.393 |
11 |
VANCE J E. Phospholipid synthesis in a membrane fraction associated with mitochondria[J]. J Biol Chem, 1990,265(13):7248-7256. doi:10.1016/s0021-9258(19)39106-9
doi: 10.1016/s0021-9258(19)39106-9 |
12 |
POSTON C N, KRISHNAN S C, BAZEMORE-WALKER C R. In-depth proteomic analysis of mammalian mitochondria-associated membranes (MAM)[J]. J Proteomics, 2013,79:219-230. doi:10.1016/j.jprot.2012.12.018
doi: 10.1016/j.jprot.2012.12.018 |
13 |
MAO H, CHEN W, CHEN L, et al. Potential role of mitochondria-associated endoplasmic reticulum membrane proteins in diseases[J]. Biochem Pharmacol, 2022,199:115011. doi:10.1016/j.bcp.2022.115011
doi: 10.1016/j.bcp.2022.115011 |
14 |
LUDHIADCH A, SHARMA R, MURIKI A, et al. Role of Calcium Homeostasis in Ischemic Stroke: A Review[J]. CNS Neurol Disord Drug Targets, 2022,21(1):52-61. doi:10.2174/1871527320666210212141232
doi: 10.2174/1871527320666210212141232 |
15 |
ZHANG Y, MAO X, LIN R, et al. Electroacupuncture ameliorates cognitive impairment through inhibition of Ca2+-mediated neurotoxicity in a rat model of cerebral ischaemia-reperfusion injury[J]. Acupunct Med, 2018,36(6):401-407. doi:10.1136/acupmed-2016-011353
doi: 10.1136/acupmed-2016-011353 |
16 |
HUTCHINS B I, LI L, KALIL K. Wnt-induced calcium signaling mediates axon growth and guidance in the developing corpus callosum[J]. Sci Signal, 2012,5(206):pt1. doi:10.1126/scisignal.2002523
doi: 10.1126/scisignal.2002523 |
17 |
DE RIDDER I, KERKHOFS M, LEMOS F O, et al. The ER-mitochondria interface, where Ca2+ and cell death meet[J]. Cell Calcium, 2023,112:102743. doi:10.1016/j.ceca.2023.102743
doi: 10.1016/j.ceca.2023.102743 |
18 |
CHANG Y, WANG C, ZHU J, et al. SIRT3 ameliorates diabetes-associated cognitive dysfunction via regulating mitochondria-associated ER membranes[J]. J Transl Med, 2023,21(1):494. doi:10.1186/s12967-023-04246-9
doi: 10.1186/s12967-023-04246-9 |
19 |
SONG L L, QU Y Q, TANG Y P, et al. Hyperoside alleviates toxicity of β-amyloid via endoplasmic reticulum-mitochondrial calcium signal transduction cascade in APP/PS1 double transgenic Alzheimer's disease mice[J]. Redox Biol, 2023,61:102637. doi:10.1016/j.redox.2023.102637
doi: 10.1016/j.redox.2023.102637 |
20 |
YOON J H, SEO Y, JO Y S, et al. Brain lipidomics: From functional landscape to clinical significance[J]. Sci Adv, 2022,8(37):eadc9317. doi:10.1126/sciadv.adc9317
doi: 10.1126/sciadv.adc9317 |
21 |
SABOGAL-GUÁQUETA A M, VILLAMIL-ORTIZ J G, ARIAS-LONDOÑO J D, et al. Inverse Phosphatidylcholine/Phosphatidylinositol Levels as Peripheral Biomarkers and Phosphatidylcholine/Lysophosphatidylethanolamine-Phosphatidylserine as Hippocampal Indicator of Postischemic Cognitive Impairment in Rats[J]. Front Neurosci, 2018,12:989. doi:10.3389/fnins.2018.00989
doi: 10.3389/fnins.2018.00989 |
22 |
LIU L W, YUE H Y, ZOU J, et al. Comprehensive metabolomics and lipidomics profiling uncovering neuroprotective effects of Ginkgo biloba L. leaf extract on Alzheimer's disease[J]. Front Pharmacol, 2022,13:1076960. doi:10.3389/fphar.2022.1076960
doi: 10.3389/fphar.2022.1076960 |
23 |
YANG Z, WANG H, EDWARDS D, et al. Association of blood lipids, atherosclerosis and statin use with dementia and cognitive impairment after stroke: A systematic review and meta-analysis[J]. Ageing Res Rev, 2020,57:100962. doi:10.1016/j.arr.2019.100962
doi: 10.1016/j.arr.2019.100962 |
24 |
VOELKER D R. Reconstitution of phosphatidylserine import into rat liver mitochondria [J]. J Biol Chem, 1989, 264(14): 8019-8025. doi:10.1016/s0021-9258(18)83144-1
doi: 10.1016/s0021-9258(18)83144-1 |
25 |
HUTTUNEN H J, HAVAS D, PEACH C, et al. The acyl-coenzyme A: cholesterol acyltransferase inhibitor CI-1011 reverses diffuse brain amyloid pathology in aged amyloid precursor protein transgenic mice[J]. J Neuropathol Exp Neurol, 2010,69(8):777-788. doi:10.1097/nen.0b013e3181e77ed9
doi: 10.1097/nen.0b013e3181e77ed9 |
26 |
BRYLEVA E Y, ROGERS M A, CHANG C C, et al. ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD[J]. Proc Natl Acad Sci U S A, 2010,107(7):3081-3086. doi:10.1073/pnas.0913828107
doi: 10.1073/pnas.0913828107 |
27 |
YANG J L, MUKDA S, CHEN S D. Diverse roles of mitochondria in ischemic stroke[J]. Redox Biol, 2018,16:263-275. doi:10.1016/j.redox.2018.03.002
doi: 10.1016/j.redox.2018.03.002 |
28 |
LAI Y, LIN P, CHEN M, et al. Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function[J]. Redox Biol, 2020,34:101503. doi:10.1016/j.redox.2020.101503
doi: 10.1016/j.redox.2020.101503 |
29 |
KANDIMALLA R, MANCZAK M, FRY D, et al. Correction to: Reduced dynamin-related protein 1 protects against phosphorylated Tau-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease[J]. Hum Mol Genet, 2023,32(8):1410-1411. doi:10.1093/hmg/ddac305
doi: 10.1093/hmg/ddac305 |
30 |
ZHANG Y, RUI T, LUO C, LI Q. Mdivi-1 alleviates brain damage and synaptic dysfunction after intracerebral hemorrhage in mice[J]. Exp Brain Res, 2021,239(5):1581-1593. doi:10.1007/s00221-021-06089-6
doi: 10.1007/s00221-021-06089-6 |
31 |
CHENG Y, BUCHAN M, VITANOVA K, et al. Neuroprotective actions of leptin facilitated through balancing mitochondrial morphology and improving mitochondrial function[J]. J Neurochem, 2020,155(2):191-206. doi:10.1111/jnc.15003
doi: 10.1111/jnc.15003 |
32 |
FRIEDMAN J R, LACKNER L L, WEST M, et al. ER tubules mark sites of mitochondrial division[J]. Science, 2011,334(6054):358-362. doi:10.1126/science.1207385
doi: 10.1126/science.1207385 |
33 |
OUYANG M, ZHANG Q, SHU J, et al. Capsaicin Ameliorates the Loosening of Mitochondria-Associated Endoplasmic Reticulum Membranes and Improves Cognitive Function in Rats With Chronic Cerebral Hypoperfusion[J]. Front Cell Neurosci, 2022,16:822702. doi:10.3389/fncel.2022.822702
doi: 10.3389/fncel.2022.822702 |
34 |
JIANG S, NANDY P, WANG W, et al. Mfn2 ablation causes an oxidative stress response and eventual neuronal death in the hippocampus and cortex[J]. Mol Neurodegener, 2018,13(1):5. doi:10.1096/fasebj.31.1_supplement.659.7
doi: 10.1096/fasebj.31.1_supplement.659.7 |
35 |
LIU B, GAO J M, LI F, et al. Gastrodin Attenuates Bilateral Common Carotid Artery Occlusion-Induced Cognitive Deficits via Regulating Aβ-Related Proteins and Reducing Autophagy and Apoptosis in Rats[J]. Front Pharmacol, 2018,9:405. doi:10.3389/fphar.2018.00405
doi: 10.3389/fphar.2018.00405 |
36 |
SHENG R, LIU X Q, ZHANG L S, et al. Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning[J]. Autophagy, 2012,8(3):310-325. doi:10.4161/auto.18673
doi: 10.4161/auto.18673 |
37 |
HAMASAKI M, FURUTA N, MATSUDA A, et al. Autophagosomes form at ER-mitochondria contact sites[J]. Nature, 2013,495(7441):389-393. doi:10.1038/nature11910
doi: 10.1038/nature11910 |
38 |
CHEN L, XIA Y F, SHEN S F, et al. Syntaxin 17 inhibits ischemic neuronal injury by resuming autophagy flux and ameliorating endoplasmic reticulum stress[J]. Free Radic Biol Med, 2020,160:319-333. doi:10.1016/j.freeradbiomed.2020.08.010
doi: 10.1016/j.freeradbiomed.2020.08.010 |
39 |
吴静,聂祖琼,尹琬凌. miR-499通过Drp1介导线粒体自噬保护缺氧/复氧心肌细胞[J].实用医学杂志, 2023,39(17):2196-2203. doi:10.3969/j.issn.1006-5725.2023.17.008
doi: 10.3969/j.issn.1006-5725.2023.17.008 |
40 |
ZHAO Z, XIE L, SHI J, et al. Neuroprotective Effect of Zishen Huoxue Decoction treatment on Vascular Dementia by activating PINK1/Parkin mediated Mitophagy in the Hippocampal CA1 Region[J]. J Ethnopharmacol, 2023,319(Pt 1):117172. doi:10.1016/j.jep.2023.117172
doi: 10.1016/j.jep.2023.117172 |
41 |
WANG H, ZHANG S, XIE L, et al. Neuroinflammation and peripheral immunity: Focus on ischemic stroke[J]. Int Immunopharmacol, 2023,120:110332. doi:10.1016/j.intimp.2023.110332
doi: 10.1016/j.intimp.2023.110332 |
42 | 陈虹茹,何川,黄重生,等. 电针联合重复经颅磁刺激对D-半乳糖诱导的阿尔茨海默病样模型大鼠学习记忆能力及神经炎症的影响[J]. 实用医学杂志, 2021,37(12):1534-1538. |
43 |
LI Y Q, CHEN J X, LI Q W, et al. Targeting NLRP3 inflammasome improved the neurogenesis and post-stroke cognition in a mouse model of photothrombotic stroke[J]. Neuroreport, 2020,31(11):806-813. doi:10.1097/wnr.0000000000001489
doi: 10.1097/wnr.0000000000001489 |
44 |
WANG W X, PRAJAPATI P, NELSON P T, et al. The Mitochondria-Associated ER Membranes Are Novel Subcellular Locations Enriched for Inflammatory-Responsive MicroRNAs[J]. Mol Neurobiol, 2020,57(7):2996-3013. doi:10.1007/s12035-020-01937-y
doi: 10.1007/s12035-020-01937-y |
45 |
SHA R, ZHANG B, HAN X, et al. Electroacupuncture Alleviates Ischemic Brain Injury by Inhibiting the miR-223/NLRP3 Pathway[J]. Med Sci Monit, 2019,25:4723-4733. doi:10.12659/msm.917213
doi: 10.12659/msm.917213 |
[1] | 王方明,尚文璇,张靖雯,吉盈肖,李俐涛. 自噬调控小胶质细胞极化在缺血性脑卒中的研究进展[J]. 实用医学杂志, 2024, 40(9): 1324-1330. |
[2] | 周颖,蒋大军,田勇,古雍翔,杨国辉. 抑制TRAF6调节炎症和自噬改善脓毒症小鼠的心肌损伤和心功能[J]. 实用医学杂志, 2024, 40(5): 608-614. |
[3] | 石建梅,王茜茜,韦晓洁. 铁蛋白自噬在糖尿病及其相关并发症发病机制中的研究进展[J]. 实用医学杂志, 2024, 40(3): 417-422. |
[4] | 孙良文,韦春霞,刘淼,卢敏,高少君,王博,段强,李伟,黄肖群. 全身振动联合血流限制训练对老年脑卒中偏瘫患者运动功能及社区活动能力的影响[J]. 实用医学杂志, 2024, 40(20): 2874-2879. |
[5] | 赵宝珠,杜正明,陈秀琇. 胞磷胆碱钠联合尤瑞克林对缺血性脑卒中患者miR-17-5p、miR-29b表达的影响[J]. 实用医学杂志, 2024, 40(19): 2733-2737. |
[6] | 李艳,谢先龙,朱梦莉,苏清. 血清视锥蛋白样蛋白1、铁调素25预测急性缺血性脑卒中患者静脉溶栓治疗预后的临床价值[J]. 实用医学杂志, 2024, 40(17): 2425-2429. |
[7] | 徐志燕,陈伟元,姚伟锋. 右美托咪定改善衰弱老年围术期神经认知障碍的机制及研究进展[J]. 实用医学杂志, 2024, 40(17): 2503-2507. |
[8] | 邓罗义,陈彦,曾妮,黄璞,张兴,胡康杰,郑鹏,吴霜. 健侧小脑间歇性θ短阵脉冲刺激康复治疗对脑卒中患者下肢步行功能的影响[J]. 实用医学杂志, 2024, 40(13): 1797-1802. |
[9] | 于素美,张玉月,马丽文,况园军,常庆宁,孔敏,张慧萍. miR⁃15a⁃5p对子痫前期胎盘滋养细胞自噬的影响[J]. 实用医学杂志, 2024, 40(12): 1631-1636. |
[10] | 潘春玲,易雪丽,苏丽,袁胜山,韦贵将. 环状RNA与动脉粥样硬化性缺血性脑卒中的研究进展[J]. 实用医学杂志, 2024, 40(12): 1755-1761. |
[11] | 刘娟,李彦杰,秦合伟,马璐瑶,赵楠楠,丁慧敏. 线粒体质量控制系统失调介导帕金森病的作用机制[J]. 实用医学杂志, 2024, 40(11): 1479-1482. |
[12] | 谷亚伟,楚旭,赵路静,洪波,罗芝宽,林展增,高静珍,董银华,王利军,陈念. 小剂量和标准剂量rt-PA静脉溶栓治疗高龄急性缺血性脑卒中的分层研究[J]. 实用医学杂志, 2024, 40(11): 1568-1573. |
[13] | 马雪,周世辉. p62/SQSTM1在非小细胞肺癌细胞增殖和侵袭转移中的作用[J]. 实用医学杂志, 2024, 40(1): 13-18. |
[14] | 吴涛,丁苏明,詹昶,崔雯雯,唐卫华. 早产儿视网膜病变患儿血清自噬标志物水平的变化及临床应用价值[J]. 实用医学杂志, 2024, 40(1): 79-84. |
[15] | 李孝平 周红见 高芳芳 李伟 . Tspan1通过诱导细胞自噬拮抗奥沙利铂诱导的结直肠癌细胞凋亡[J]. 实用医学杂志, 2023, 39(9): 1072-1078. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||