实用医学杂志 ›› 2024, Vol. 40 ›› Issue (9): 1324-1330.doi: 10.3969/j.issn.1006-5725.2024.09.025
• 综述 • 上一篇
收稿日期:
2023-10-31
出版日期:
2024-05-10
发布日期:
2024-05-15
通讯作者:
李俐涛
E-mail:dingding51800@163.com
基金资助:
Fangming WANG1,Wenxuan SHANG2,Jingwen ZHANG1,Yingxiao JI3,Litao. LI3()
Received:
2023-10-31
Online:
2024-05-10
Published:
2024-05-15
Contact:
Litao. LI
E-mail:dingding51800@163.com
摘要:
缺血性脑卒中具有发病率高、致残率高、病死率高的特点。炎症在缺血性脑卒中的发生发展中起到重要作用。活化的小胶质细胞表现出促炎(M1)和抗炎(M2)两个不同的表型,调节小胶质细胞由M1向M2型转化是临床获益关键。研究表明自噬对小胶质细胞的表型转化起到关键调控作用。如何发挥自噬的调节作用,促进小胶质细胞向M2型转化,成为减轻脑卒中后继发性脑损伤的临床研究热点,本文以此为出发点综述自噬调控小胶质细胞极化在缺血性脑卒中的研究进展,旨在为本领域基础及临床研究提供参考。
中图分类号:
王方明,尚文璇,张靖雯,吉盈肖,李俐涛. 自噬调控小胶质细胞极化在缺血性脑卒中的研究进展[J]. 实用医学杂志, 2024, 40(9): 1324-1330.
Fangming WANG,Wenxuan SHANG,Jingwen ZHANG,Yingxiao JI,Litao. LI. Research advances on the regulation of microglia polarization by autophagy in ischemic stroke[J]. The Journal of Practical Medicine, 2024, 40(9): 1324-1330.
1 |
CANDELARIO-JALIL E, DIJKHUIZEN R M, MAGNUS T. Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities[J]. Stroke, 2022,53(5):1473-1486. doi:10.1161/strokeaha.122.036946
doi: 10.1161/strokeaha.122.036946 |
2 |
李虹莹,沈缘,吴巧凤,等. 小胶质细胞极化信号通路在神经炎症中的研究进展[J]. 实用医学杂志, 2022,38(14):1838-1841+1846. doi:10.3969/j.issn.1006⁃5725.2022.14.024
doi: 10.3969/j.issn.1006?5725.2022.14.024 |
3 |
MA K, GUO J, WANG G, et al. Toll-Like Receptor 2-Mediated Autophagy Promotes Microglial Cell Death by Modulating the Microglial M1/M2 Phenotype[J]. Inflammation, 2020,43(2):701-711. doi:10.1007/s10753-019-01152-5
doi: 10.1007/s10753-019-01152-5 |
4 | JIANG C T, WU W F, DENG Y H, et al. Modulators of microglia activation and polarization in ischemic stroke[J]. Mol Med Rep, 2020,21(5):2006-2018. |
5 |
HU X, LI P, GUO Y, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia[J/OL]. Stroke, 2012, 43(11): 3063-3070. doi:10.1161/strokeaha.112.659656
doi: 10.1161/strokeaha.112.659656 |
6 |
LI W, HE P, HUANG Y, et al. Selective autophagy of intracellular organelles: recent research advances[J]. Theranostics, 2021,11(1):222-256. doi:10.7150/thno.49860
doi: 10.7150/thno.49860 |
7 | KLIONSKY D J, PETRONI G, AMARAVADI R K, al el. Autophagy in major human diseases[J]. EMBO J, 2021,40(19):e108863. |
8 |
MIZUSHIMA N, LEVINE B. Autophagy in Human Diseases[J]. N Engl J Med, 2020,383(16):1564-1576. doi:10.1056/nejmra2022774
doi: 10.1056/nejmra2022774 |
9 |
ZHAO Z, WANG C, ZHANG L, et al. Lactobacillus plantarum NA136 improves the non-alcoholic fatty liver disease by modulating the AMPK/Nrf2 pathway[J/OL]. Appl Microbiol Biotechnol, 2019, 103(14): 5843-5850. doi:10.1007/s00253-019-09703-4
doi: 10.1007/s00253-019-09703-4 |
10 |
MA L, LI W, ZHANG Y, et al. FLT4/VEGFR3 activates AMPK to coordinate glycometabolic reprogramming with autophagy and inflammasome activation for bacterial elimination[J]. Autophagy,2022,18(6):1385-1400. doi:10.1080/15548627.2021.1985338
doi: 10.1080/15548627.2021.1985338 |
11 |
HARIHARAN N, ZHAI P, SADOSHIMA J. Oxidative stress stimulates autophagic flux during ischemia/reperfusion[J]. Antioxid Redox Signal, 2011,14(11):2179-2190. doi:10.1089/ars.2010.3488
doi: 10.1089/ars.2010.3488 |
12 |
PEÑA-MARTINEZ C, RICKMAN A D, HECKMANN B L. Beyond autophagy: LC3-associated phagocytosis and endocytosis[J]. Sci Adv, 2022,8(43):eabn1702. doi:10.1126/sciadv.abn1702
doi: 10.1126/sciadv.abn1702 |
13 |
TURCO E, SAVOVA A, GERE F, et al. Reconstitution defines the roles of p62, NBR1 and TAX1BP1 in ubiquitin condensate formation and autophagy initiation[J]. Nat Commun, 2021,12(1):5212. doi:10.1038/s41467-021-25572-w
doi: 10.1038/s41467-021-25572-w |
14 |
张茹鑫, 李承罡, 杜若琛, 等. 人脐带间充质干细胞对自然衰老大鼠海马自噬水平的影响[J]. 中国实验动物学报, 2020, 28(6): 796-804. doi:10.3969/j.issn.1005-4847.2020.06.009
doi: 10.3969/j.issn.1005-4847.2020.06.009 |
15 |
CAO W, LI J, YANG K, et al. An overview of autophagy: Mechanism, regulation and research progress[J]. Bull Cancer,2021,108(3):304-322. doi:10.1016/j.bulcan.2020.11.004
doi: 10.1016/j.bulcan.2020.11.004 |
16 |
JIANG M, WANG H, JIN M, et al. Exosomes from MiR-30d-5p-ADSCs Reverse Acute Ischemic Stroke-Induced, Autophagy-Mediated Brain Injury by Promoting M2 Microglial/Macrophage Polarization[J]. Cell Physiol Biochem, 2018,47(2):864-878. doi:10.1159/000490078
doi: 10.1159/000490078 |
17 |
QIN C, LIU Q, HU Z W, et al. Microglial TLR4-dependent autophagy induces ischemic white matter damage via STAT1/6 pathway[J]. Theranostics, 2018,8(19):5434-5451. doi:10.7150/thno.27882
doi: 10.7150/thno.27882 |
18 |
XU X, XU H, REN F, et al. Protective effect of scorpion venom heat-resistant synthetic peptide against PM2.5-induced microglial polarization via TLR4-mediated autophagy activating PI3K/AKT/NF-κB signaling pathway[J/OL]. J Neuroimmunol, 2021, 355: 577567. doi:10.1016/j.jneuroim.2021.577567
doi: 10.1016/j.jneuroim.2021.577567 |
19 |
GE Y, WANG L, WANG C, et al. CX3CL1 inhibits NLRP3 inflammasome-induced microglial pyroptosis and improves neuronal function in mice with experimentally-induced ischemic stroke[J]. Life Sci, 2022,300:120564. doi:10.1016/j.lfs.2022.120564
doi: 10.1016/j.lfs.2022.120564 |
20 |
HE H Y, REN L, GUO T, et al. Neuronal autophagy aggravates microglial inflammatory injury by downregulating CX3CL1/fractalkine after ischemic stroke[J/OL]. Neural Regen Res, 2019, 14(2): 280-288. doi:10.4103/1673-5374.244793
doi: 10.4103/1673-5374.244793 |
21 |
BALLESTEROS-ÁLVAREZ J, ANDERSEN J K. mTORC2: The other mTOR in autophagy regulation[J]. Aging Cell, 2021,20(8):e13431. doi:10.1111/acel.13431
doi: 10.1111/acel.13431 |
22 |
LI D, WANG C, YAO Y, et al. mTORC1 pathway disruption ameliorates brain inflammation following stroke via a shift in microglia phenotype from M1 type to M2 type[J]. FASEB J, 2016,30(10):3388-3399. doi:10.1096/fj.201600495r
doi: 10.1096/fj.201600495r |
23 |
MONTAIGNE D, BUTRUILLE L, STAELS B. PPAR control of metabolism and cardiovascular functions[J]. Nat Rev Cardiol,2021,18(12):809-823. doi:10.1038/s41569-021-00569-6
doi: 10.1038/s41569-021-00569-6 |
24 |
LI L, GAN H, JIN H, et al. Astragaloside Ⅳ promotes microglia/macrophages M2 polarization and enhances neurogenesis and angiogenesis through PPARγ pathway after cerebral ischemia/reperfusion injury in rats[J]. Int Immunopharmacol,2021,92:107335. doi:10.1016/j.intimp.2020.107335
doi: 10.1016/j.intimp.2020.107335 |
25 |
JI J, XUE T F, GUO X D, et al. Antagonizing peroxisome proliferator-activated receptor γ facilitates M1-to-M2 shift of microglia by enhancing autophagy via the LKB1-AMPK signaling pathway[J]. Aging Cell, 2018, 17(4): e12774. doi:10.1111/acel.12774
doi: 10.1111/acel.12774 |
26 |
LI X, XIA Q, MAO M, et al. Annexin-A1 SUMOylation regulates microglial polarization after cerebral ischemia by modulating IKKα stability via selective autophagy[J]. Sci Adv, 2021, 7(4): eabc5539. doi:10.1126/sciadv.abc5539
doi: 10.1126/sciadv.abc5539 |
27 |
DANG R, YANG M, CUI C, et al. Activation of angiotensin‐converting enzyme 2/angiotensin (1-7)/mas receptor axis triggers autophagy and suppresses microglia proinflammatory polarization via forkhead box class O1 signaling[J]. Aging Cell, 2021, 20(10): e13480. doi:10.1111/acel.13480
doi: 10.1111/acel.13480 |
28 |
WU Y T, TAN H L, SHUI G, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase[J/OL]. J Biol Chem, 2010, 285(14): 10850-10861. doi:10.1074/jbc.m109.080796
doi: 10.1074/jbc.m109.080796 |
29 |
HADLEY G, BEARD D J, COUCH Y, et al. Rapamycin in ischemic stroke: Old drug, new tricks?[J]. J Cereb Blood Flow Metab, 2019,39(1):20-35. doi:10.1177/0271678x18807309
doi: 10.1177/0271678x18807309 |
30 |
JAHRLING J B, LIN A L, DEROSA N, et al. mTOR drives cerebral blood flow and memory deficits in LDLR-/- mice modeling atherosclerosis and vascular cognitive impairment[J]. J Cereb Blood Flow Metab, 2018,38(1):58-74. doi:10.1177/0271678x17705973
doi: 10.1177/0271678x17705973 |
31 |
ZHAI J, LI N, ZHANG X, et al. Isoflurane Enhances Autophagy by Activating AMPK/ULK1, Inhibits NLRP3, and Reduces Cognitive Impairment After Cerebral Ischemia-Reperfusion Injury in Rats[J]. J Mol Neurosci, 2023,73(7-8):549-562. doi:10.1007/s12031-023-02135-w
doi: 10.1007/s12031-023-02135-w |
32 |
PENG L, YIN J, WANG S, et al. TGF-β2/Smad3 Signaling Pathway Activation Through Enhancing VEGF and CD34 Ameliorates Cerebral Ischemia/Reperfusion Injury After Isoflurane Post-conditioning in Rats[J]. Neurochem Res, 2019,44(11):2606-2618. doi:10.1007/s11064-019-02880-8
doi: 10.1007/s11064-019-02880-8 |
33 |
HECKMANN B L, YANG X, ZHANG X, et al. The autophagic inhibitor 3-methyladenine potently stimulates PKA-dependent lipolysis in adipocytes[J/OL]. Br J Pharmacol, 2013, 168(1): 163-171. doi:10.1111/j.1476-5381.2012.02110.x
doi: 10.1111/j.1476-5381.2012.02110.x |
34 |
ZHANG X, ZHANG L, Bi Y, et al. Inhibition of autophagy by 3-methyladenine restricts murine cytomegalovirus replication[J/OL]. J Med Virol, 2021, 93(8): 5001-5016. doi:10.1002/jmv.26787
doi: 10.1002/jmv.26787 |
35 | 肖学进. 自噬抑制对局灶性脑缺血再灌注细胞死亡方式的影响[D]. 锦州:锦州医科大学, 2018. |
36 |
GUPTA S, BUTTAR H S, KAUR G, TULI HS. Baicalein: promising therapeutic applications with special reference to published patents[J]. Pharm Pat Anal, 2022,11(1):23-32. doi:10.4155/ppa-2021-0027
doi: 10.4155/ppa-2021-0027 |
37 |
YANG S, WANG H, YANG Y, et al. Baicalein administered in the subacute phase ameliorates ischemia-reperfusion-induced brain injury by reducing neuroinflammation and neuronal damage[J]. Biomed Pharmacother, 2019,117:109102. doi:10.1016/j.biopha.2019.109102
doi: 10.1016/j.biopha.2019.109102 |
38 |
BOZ C, OZAKBAS S, TERZI M,et al. The comparative effectiveness of fingolimod, natalizumab, and ocrelizumab in relapsing-remitting multiple sclerosis[J]. Neurol Sci, 2023,44(6):2121-2129. doi:10.1007/s10072-023-06608-z
doi: 10.1007/s10072-023-06608-z |
39 |
LI X, WANG M H, QIN C,et al. Fingolimod suppresses neuronal autophagy through the mTOR/p70S6K pathway and alleviates ischemic brain damage in mice[J]. PLoS One, 2017,12(11):e0188748. doi:10.1371/journal.pone.0188748
doi: 10.1371/journal.pone.0188748 |
40 |
MAES H, KUCHNIO A, PERIC A, et al. Tumor vessel normalization by chloroquine independent of autophagy[J]. Cancer Cell,2014,26(2):190-206. doi:10.1016/j.ccr.2014.06.025
doi: 10.1016/j.ccr.2014.06.025 |
41 |
CUI J, YU J, XU H, et al. Erratum: Autophagy-lysosome inhibitor chloroquine prevents CTLA-4 degradation of T cells and attenuates acute rejection in murine skin and heart transplantation: Erratum[J]. Theranostics, 2022,12(7):3580-3581. doi:10.7150/thno.73353
doi: 10.7150/thno.73353 |
42 |
HARRIS J. Autophagy and cytokines[J]. Cytokine, 2011,56(2):140-144. doi:10.1016/j.cyto.2011.08.022
doi: 10.1016/j.cyto.2011.08.022 |
43 |
LIU C H, LIU H Y, GE B X. Innate immunity in tuberculosis: host defense vs pathogen evasion[J]. Cell Mol Immunol, 2017,14(12):963-975. doi:10.1038/cmi.2017.88
doi: 10.1038/cmi.2017.88 |
44 |
龙嘉琪,李跃兵.肺缺血再灌注损伤炎症与自噬相关性的研究进展[J].实用医学杂志, 2022,38(12):1558-1562. doi:10.3969/j.issn.1006-5725.2022.12.021
doi: 10.3969/j.issn.1006-5725.2022.12.021 |
45 | JIANG C T, WU W F, DENG Y H, et al. Modulators of microglia activation and polarization in ischemic stroke (Review)[J]. Mol Med Rep, 2020,21(5):2006-2018. |
[1] | 陈露露,罗萌,苏凯奇,高静,冯晓东. 内质网-线粒体互作在卒中后认知障碍中的研究进展[J]. 实用医学杂志, 2024, 40(7): 1023-1028. |
[2] | 周颖,蒋大军,田勇,古雍翔,杨国辉. 抑制TRAF6调节炎症和自噬改善脓毒症小鼠的心肌损伤和心功能[J]. 实用医学杂志, 2024, 40(5): 608-614. |
[3] | 石建梅,王茜茜,韦晓洁. 铁蛋白自噬在糖尿病及其相关并发症发病机制中的研究进展[J]. 实用医学杂志, 2024, 40(3): 417-422. |
[4] | 石喆,左夏林,彭林辉,卢志伟,李孔平. M1型小胶质细胞极化在大脑皮层梗死后继发丘脑损伤中的作用[J]. 实用医学杂志, 2024, 40(22): 3138-3145. |
[5] | 赵宝珠,杜正明,陈秀琇. 胞磷胆碱钠联合尤瑞克林对缺血性脑卒中患者miR-17-5p、miR-29b表达的影响[J]. 实用医学杂志, 2024, 40(19): 2733-2737. |
[6] | 李艳,谢先龙,朱梦莉,苏清. 血清视锥蛋白样蛋白1、铁调素25预测急性缺血性脑卒中患者静脉溶栓治疗预后的临床价值[J]. 实用医学杂志, 2024, 40(17): 2425-2429. |
[7] | 孙茹雪,朱梦莉,刘晶晶,陈飞. Raf激酶抑制剂蛋白信号通路表达影响小胶质细胞极化对脑出血大鼠的神经保护机制[J]. 实用医学杂志, 2024, 40(14): 1935-1940. |
[8] | 于素美,张玉月,马丽文,况园军,常庆宁,孔敏,张慧萍. miR⁃15a⁃5p对子痫前期胎盘滋养细胞自噬的影响[J]. 实用医学杂志, 2024, 40(12): 1631-1636. |
[9] | 潘春玲,易雪丽,苏丽,袁胜山,韦贵将. 环状RNA与动脉粥样硬化性缺血性脑卒中的研究进展[J]. 实用医学杂志, 2024, 40(12): 1755-1761. |
[10] | 刘娟,李彦杰,秦合伟,马璐瑶,赵楠楠,丁慧敏. 线粒体质量控制系统失调介导帕金森病的作用机制[J]. 实用医学杂志, 2024, 40(11): 1479-1482. |
[11] | 谷亚伟,楚旭,赵路静,洪波,罗芝宽,林展增,高静珍,董银华,王利军,陈念. 小剂量和标准剂量rt-PA静脉溶栓治疗高龄急性缺血性脑卒中的分层研究[J]. 实用医学杂志, 2024, 40(11): 1568-1573. |
[12] | 马雪,周世辉. p62/SQSTM1在非小细胞肺癌细胞增殖和侵袭转移中的作用[J]. 实用医学杂志, 2024, 40(1): 13-18. |
[13] | 吴涛,丁苏明,詹昶,崔雯雯,唐卫华. 早产儿视网膜病变患儿血清自噬标志物水平的变化及临床应用价值[J]. 实用医学杂志, 2024, 40(1): 79-84. |
[14] | 李孝平 周红见 高芳芳 李伟 . Tspan1通过诱导细胞自噬拮抗奥沙利铂诱导的结直肠癌细胞凋亡[J]. 实用医学杂志, 2023, 39(9): 1072-1078. |
[15] | 葛亮 冷玉芳 张鹏 杜丽芳 韩旭东 . 右美托咪定通过激活PI3K/AKT信号通路对前列腺素诱导分娩窒息子鼠氧化应激和炎症水平的影响及脑保护机制 [J]. 实用医学杂志, 2023, 39(6): 688-695. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||