1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi:10.3322/caac.21660
doi: 10.3322/caac.21660
|
2 |
WANG C, WANG Z, WANG G, et al. COVID-19 in early 2021: current status and looking forward[J]. Signal Transduct Target Ther, 2021, 6(1): 114. doi:10.1038/s41392-021-00527-1
doi: 10.1038/s41392-021-00527-1
|
3 |
BAGCCHI S. WHO′s Global Tuberculosis Report 2022[J]. Lancet Microbe, 2023, 4(1): e20. doi:10.1016/s2666-5247(22)00359-7
doi: 10.1016/s2666-5247(22)00359-7
|
4 |
吴惠忠,胡锦兴. 结核病传播研究进展[J]. 实用医学杂志, 2023, 39(19): 2424-2427. doi:10.3969/j.issn.1006-5725.2023.19.002
doi: 10.3969/j.issn.1006-5725.2023.19.002
|
5 |
HWANG S Y, KIM J Y, LEE H S, et al. Pulmonary Tuberculosis and Risk of Lung Cancer: A Systematic Review and Meta-Analysis[J]. J Clin Med,2022, 11(3):765. doi:10.3390/jcm11030765
doi: 10.3390/jcm11030765
|
6 |
ELHADI M, KHALED A, MSHERGHI A. Infectious diseases as a cause of death among cancer patients: a trend analysis and population-based study of outcome in the United States based on the Surveillance, Epidemiology, and End Results database[J]. Infect Agent Cancer, 2021, 16(1): 72. doi:10.1186/s13027-021-00413-z
doi: 10.1186/s13027-021-00413-z
|
7 |
XIONG K, SUN W, HE Y, et al. Advances in molecular mechanisms of interaction between Mycobacterium tuberculosis and lung cancer: a narrative review.[J]. Transl Lung Cancer Res,2021, 10(10): 4012-4026. doi:10.21037/tlcr-21-465
doi: 10.21037/tlcr-21-465
|
8 |
中华人民共和国国家卫生和计划生育委员会. 结核病分类(ws196—2017) [J]. 新发传染病电子杂志, 2018(3):191-192. doi:10.3877/j.issn.2096-2738.2018.03.019
doi: 10.3877/j.issn.2096-2738.2018.03.019
|
9 |
YANG L, ZHUANG L, YE Z, et al. Immunotherapy and biomarkers in patients with lung cancer with tuberculosis: Recent advances and future Directions[J]. iScience, 2023, 26(10): 107881. doi:10.1016/j.isci.2023.107881
doi: 10.1016/j.isci.2023.107881
|
10 |
崔兰兰,张革, 徐邦牢. 牙龈卟啉单胞菌感染性食管鳞癌细胞外泌体蛋白组学分析[J]. 实用医学杂志, 2023, 39(17): 2171-2175. doi:10.3969/j.issn.1006-5725.2023.17.004
doi: 10.3969/j.issn.1006-5725.2023.17.004
|
11 |
LIU Q, ZHANG J, GUO C, et al. Proteogenomic characterization of small cell lung cancer identifies biological insights and subtype-specific therapeutic strategies[J]. Cell, 2024, 187(1): 184-203.e28. doi:10.1016/j.cell.2023.12.004
doi: 10.1016/j.cell.2023.12.004
|
12 |
GILLETTE M A, SATPATHY S, CAO S, et al. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma[J]. Cell, 2020, 182(1): 200-225.e35.
|
13 |
ZHANG M, XIE Y, LI S, et al. Proteomics Analysis of Exosomes From Patients With Active Tuberculosis Reveals Infection Profiles and Potential Biomarkers[J]. Front Microbiol, 2022, 12: 800807. doi:10.3389/fmicb.2021.800807
doi: 10.3389/fmicb.2021.800807
|
14 |
KALJAS Y, LIU C, SKALDIN M, et al. Human adenosine deaminases ADA1 and ADA2 bind to different subsets of immune cells[J]. Cell Mol Life Sci, 2017, 74(3): 555-570. doi:10.1007/s00018-016-2357-0
doi: 10.1007/s00018-016-2357-0
|
15 |
DELEMARRE E M, VAN HOORN L, BOSSINK A W J, et al. Serum biomarker profile including CCL1, CXCL10, VEGF, and adenosine deaminase activity distinguishes active from remotely acquired latent tuberculosis[J]. Front Immunol, 2021, 12: 725447. doi:10.3389/fimmu.2021.725447
doi: 10.3389/fimmu.2021.725447
|
16 |
NAGY Á, LÁNCZKY A, MENYHÁRT O, et al. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets[J]. Sci Rep, 2018, 8(1): 9227. doi:10.1038/s41598-018-27521-y
doi: 10.1038/s41598-018-27521-y
|
17 |
WANG L, LONDONO L M, COWELL J, et al. Targeting adenosine with adenosine deaminase 2 to inhibit growth of solid tumors[J]. Cancer Res, 2021, 81(12): 3319-3332. doi:10.1158/0008-5472.can-21-0340
doi: 10.1158/0008-5472.can-21-0340
|
18 |
LI H, CAO W, CHEN S, et al. Comparative interleukins and chemokines analysis of mice mesenchymal stromal cells infected with mycobacterium tuberculosis H37Rv and H37Ra[J]. Arch Biochem Biophys, 2023, 744: 109673. doi:10.1016/j.abb.2023.109673
doi: 10.1016/j.abb.2023.109673
|
19 |
XUE Z, VIS D J, BRUNA A, et al. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models[J]. Cell Res, 2018, 28(7): 719-729. doi:10.1038/s41422-018-0044-4
doi: 10.1038/s41422-018-0044-4
|
20 |
LIU C, WANG S, ZHU S, et al. MAP3K1-targeting therapeutic artificial miRNA suppresses the growth and invasion of breast cancer in vivo and in vitro[J]. Springerplus, 2016, 5: 11. doi:10.1186/s40064-015-1597-z
doi: 10.1186/s40064-015-1597-z
|
21 |
JIN J, J-K BYUN, Y-K CHOI, et al. Targeting glutamine metabolism as a therapeutic strategy for cancer[J]. Exp Mol Med, 2023, 55(4): 706-715. doi:10.1038/s12276-023-00971-9
doi: 10.1038/s12276-023-00971-9
|
22 |
KOEKEN V A C M, LACHMANDAS E, RIZA A, et al. Role of glutamine metabolism in host defense against mycobacterium tuberculosis infection[J]. J Infect Dis, 2019, 219(10): 1662-1670. doi:10.1093/infdis/jiy709
doi: 10.1093/infdis/jiy709
|
23 |
VÁZQUEZ C L, RODGERS A, HERBST S, et al. The proneurotrophin receptor sortilin is required for Mycobacterium tuberculosis control by macrophages[J]. Sci Rep, 2016, 6: 29332. doi:10.1038/srep29332
doi: 10.1038/srep29332
|
24 |
AL-AKHRASS H, NAVES T, VINCENT F, et al. Sortilin limits EGFR signaling by promoting its internalization in lung cancer[J]. Nat Commun, 2017, 8(1): 1182. doi:10.1038/s41467-017-01172-5
doi: 10.1038/s41467-017-01172-5
|
25 |
SCHAAFSMA E, FUGLE C M, WANG X, et al. Pan-cancer association of HLA gene expression with cancer prognosis and immunotherapy efficacy[J]. Br J Cancer, 2021, 125(3): 422-432. doi:10.1038/s41416-021-01400-2
doi: 10.1038/s41416-021-01400-2
|
26 |
SENOSAIN M F, ZOU Y, NOVITSKAYA T, et al. HLA-DR cancer cells expression correlates with T cell infiltration and is enriched in lung adenocarcinoma with indolent behavior[J]. Sci Rep, 2021, 11(1): 14424. doi:10.1038/s41598-021-93807-3
doi: 10.1038/s41598-021-93807-3
|
27 |
YANG P L, HE X J, ZANG Q J, et al. Association of human leukocyte antigen DRB1 polymorphism and tuberculosis: a meta-analysis[J]. Int J Tuberc Lung Dis, 2016, 20(1): 121-128. doi:10.5588/ijtld.14.0930
doi: 10.5588/ijtld.14.0930
|