1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi:10.3322/caac.21660
doi: 10.3322/caac.21660
|
2 |
CHEN T Y, FANG Y H, CHEN H L, et al. Impact of cooking oil fume exposure and fume extractor use on lung cancer risk in non-smoking Han Chinese women[J]. Sci Rep, 2020, 10(1): 6774. doi:10.1038/s41598-020-63656-7
doi: 10.1038/s41598-020-63656-7
|
3 |
HUANG Y, ZHU M, JI M, et al. Air Pollution, Genetic Factors, and the Risk of Lung Cancer: A Prospective Study in the UK Biobank[J]. Am J Respir Crit Care Med, 2021, 204(7): 817-825. doi:10.1164/rccm.202011-4063oc
doi: 10.1164/rccm.202011-4063oc
|
4 |
JOSEPH A M, ROTHMAN A J, ALMIRALL D, et al. Lung Cancer Screening and Smoking Cessation Clinical Trials. SCALE (Smoking Cessation within the Context of Lung Cancer Screening) Collaboration[J]. Am J Respir Crit Care Med, 2018, 197(2): 172-182. doi:10.1164/rccm.201705-0909ci
doi: 10.1164/rccm.201705-0909ci
|
5 |
WANG M, HERBST R S, BOSHOFF C. Toward personalized treatment approaches for non-small-cell lung cancer[J]. Nat Med, 2021, 27(8): 1345-1356. doi:10.1038/s41591-021-01450-2
doi: 10.1038/s41591-021-01450-2
|
6 |
BHUSAL R P, FOSTER S R, STONE M J. Structural basis of chemokine and receptor interactions: Key regulators of leukocyte recruitment in inflammatory responses[J]. Protein Sci, 2020, 29(2): 420-432. doi:10.1002/pro.3744
doi: 10.1002/pro.3744
|
7 |
吴文娜, 陈晓红. MCP-1的表达与高血压病、动脉粥样硬化的关系[J]. 实用医学杂志, 2011, 27(15): 2876-2878.
|
8 |
LI L, LIU Y, ZHAN Y, et al. High levels of CCL2 or CCL4 in the tumor microenvironment predict unfavorable survival in lung adenocarcinoma[J]. Thoracic Cancer, 2018, 9(7): 775-784. doi:10.1111/1759-7714.12643
doi: 10.1111/1759-7714.12643
|
9 |
BURGESS S, DAVEY SMITH G, DAVIES N M, et al. Guidelines for performing Mendelian randomization investigations: update for summer 2023[J]. Wellcome Open Res, 2019, 4: 186. doi:10.12688/wellcomeopenres.15555.1
doi: 10.12688/wellcomeopenres.15555.1
|
10 |
FOLKERSEN L, GUSTAFSSON S, WANG Q, et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals[J]. Nat Metab, 2020, 2(10): 1135-1148. doi:10.1038/s42255-020-00287-2
doi: 10.1038/s42255-020-00287-2
|
11 |
MCKAY J D, HUNG R J, HAN Y, et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes[J]. Nat Genet, 2017, 49(7): 1126-1132.
|
12 |
PALMER T M, LAWLOR D A, HARBORD R M, et al. Using multiple genetic variants as instrumental variables for modifiable risk factors[J]. Stat Methods Med Res, 2012, 21(3): 223-242. doi:10.1177/0962280210394459
doi: 10.1177/0962280210394459
|
13 |
XU M, WANG Y, XIA R, et al. Role of the CCL2-CCR2 signalling axis in cancer: Mechanisms and therapeutic targeting[J]. Cell Prolif, 2021, 54(10): e13115. doi:10.1111/cpr.13115
doi: 10.1111/cpr.13115
|
14 |
FRANÇA C N, IZAR M C O, HORTÊNCIO M N S, et al. Monocyte subtypes and the CCR2 chemokine receptor in cardiovascular disease[J]. Clin Sci (Lond), 2017, 131(12): 1215-1224. doi:10.1042/cs20170009
doi: 10.1042/cs20170009
|
15 |
LIU H, YANG Z, LU W, et al. Chemokines and chemokine receptors: A new strategy for breast cancer therapy[J]. Cancer Med, 2020, 9(11): 3786-3799. doi:10.1002/cam4.3014
doi: 10.1002/cam4.3014
|
16 |
MOADAB F, KHORRAMDELAZAD H, ABBASIFARD M. Role of CCL2/CCR2 axis in the immunopathogenesis of rheumatoid arthritis: Latest evidence and therapeutic approaches[J]. Life Sci, 2021, 269: 119034. doi:10.1016/j.lfs.2021.119034
doi: 10.1016/j.lfs.2021.119034
|
17 |
YANG H, ZHANG Q, XU M, et al. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis[J]. Mol Cancer, 2020, 19(1): 41. doi:10.1186/s12943-020-01165-x
doi: 10.1186/s12943-020-01165-x
|
18 |
DING M, HE S J, YANG J. MCP-1/CCL2 Mediated by Autocrine Loop of PDGF-BB Promotes Invasion of Lung Cancer Cell by Recruitment of Macrophages Via CCL2-CCR2 Axis[J]. J Interferon Cytokine Res, 2019, 39(4): 224-232. doi:10.1089/jir.2018.0113
doi: 10.1089/jir.2018.0113
|
19 |
CHEN C H, SU L J, TSAI H T, et al. ELF-1 expression in nasopharyngeal carcinoma facilitates proliferation and metastasis of cancer cells via modulation of CCL2/CCR2 signaling[J]. Cancer Manag Res, 2019, 11: 5243-5254. doi:10.2147/cmar.s196355
doi: 10.2147/cmar.s196355
|
20 |
FENG L, QI Q, WANG P, et al. Serum level of CCL2 predicts outcome of patients with pancreatic cancer[J].Acta Gastroenterol Belg, 2020, 83(2): 295-299.
|
21 |
XIE M, LIN Z, JI X, et al. FGF19/FGFR4-mediated elevation of ETV4 facilitates hepatocellular carcinoma metastasis by upregulating PD-L1 and CCL2[J]. J Hepatol, 2023, 79(1): 109-125. doi:10.1016/j.jhep.2023.02.036
doi: 10.1016/j.jhep.2023.02.036
|
22 |
YOSHIMURA T, LI C, WANG Y, et al. The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis[J]. Cell Mol Immunol, 2023, 20(7): 714-738. doi:10.1038/s41423-023-01013-0
doi: 10.1038/s41423-023-01013-0
|
23 |
WANG Y, ZHANG X, YANG L, et al. Blockade of CCL2 enhances immunotherapeutic effect of anti-PD1 in lung cancer[J]. J Bone Oncol, 2018, 11: 27-32. doi:10.1016/j.jbo.2018.01.002
doi: 10.1016/j.jbo.2018.01.002
|
24 |
XU H, WANG J, AL-NUSAIF M, et al. CCL2 promotes metastasis and epithelial-mesenchymal transition of non-small cell lung cancer via PI3K/Akt/mTOR and autophagy pathways[J]. Cell Prolif, 2023: e13560. doi:10.1111/cpr.13560
doi: 10.1111/cpr.13560
|
25 |
YASUI H, KAJIYAMA H, TAMAUCHI S, et al. CCL2 secreted from cancer-associated mesothelial cells promotes peritoneal metastasis of ovarian cancer cells through the P38-MAPK pathway[J]. Clin Exp Metastasis, 2020, 37(1): 145-158. doi:10.1007/s10585-019-09993-y
doi: 10.1007/s10585-019-09993-y
|
26 |
WANG T, ZHAN Q, PENG X, et al. CCL2 influences the sensitivity of lung cancer A549 cells to docetaxel[J]. Oncol Lett, 2018, 16(1): 1267-1274.
|
27 |
KALBASI A, KOMAR C, TOOKER G M, et al. Tumor-Derived CCL2 Mediates Resistance to Radiotherapy in Pancreatic Ductal Adenocarcinoma[J]. Clin Cancer Res, 2017, 23(1): 137-148. doi:10.1158/1078-0432.ccr-16-0870
doi: 10.1158/1078-0432.ccr-16-0870
|
28 |
SALCEDO R, PONCE M L, YOUNG H A, et al. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression[J]. Blood, 2000, 96(1): 34-40. doi:10.1182/blood.v96.1.34.013a49_34_40
doi: 10.1182/blood.v96.1.34.013a49_34_40
|
29 |
BONAPACE L, COISSIEUX M M, WYCKOFF J, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis[J]. Nature, 2014, 515(7525): 130-133. doi:10.1038/nature13862
doi: 10.1038/nature13862
|
30 |
WEI C, YANG C, WANG S, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18(1): 64. doi:10.1186/s12943-019-0976-4
doi: 10.1186/s12943-019-0976-4
|
31 |
CHEN X, YANG M, YIN J, et al. Tumor-associated macrophages promote epithelial-mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/β-catenin signaling[J]. Cell Commun Signal, 2022, 20(1): 92. doi:10.1186/s12964-022-00888-2
doi: 10.1186/s12964-022-00888-2
|
32 |
LI X, YAO W, YUAN Y, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma[J]. Gut, 2017, 66(1): 157-167. doi:10.1136/gutjnl-2015-310514
doi: 10.1136/gutjnl-2015-310514
|
33 |
MOISAN F, FRANCISCO E B, BROZOVIC A, et al. Enhancement of paclitaxel and carboplatin therapies by CCL2 blockade in ovarian cancers[J]. Mol Oncol 2014, 8(7): 1231-1239. doi:10.1016/j.molonc.2014.03.016
doi: 10.1016/j.molonc.2014.03.016
|
34 |
QIAN B Z, LI J, ZHANG H, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis[J]. Nature, 2011, 475(7355): 222-225. doi:10.1038/nature10138
doi: 10.1038/nature10138
|
35 |
CHEN S, SHAO F, ZENG J, et al. Cullin-5 deficiency orchestrates the tumor microenvironment to promote mammary tumor development through CREB1-CCL2 signaling[J]. Sci Adv, 2023, 9(3): eabq1395. doi:10.1126/sciadv.abq1395
doi: 10.1126/sciadv.abq1395
|
36 |
MA W J, LI Z H, WU Z R, et al. PI3K-CCL2-CCR2-MDSCs axis: A potential pathway for tumor Clostridia-promoted CD 8+ T lymphocyte infiltration in bile tract cancers[J]. Neoplasia 2023, 43: 100920. doi:10.1016/j.neo.2023.100920
doi: 10.1016/j.neo.2023.100920
|
37 |
HU W M, LI M, NING J Z, et al. FAM171B stabilizes vimentin and enhances CCL2-mediated TAM infiltration to promote bladder cancer progression[J]. J Exp Clin Cancer Res, 2023, 42: 290. doi:10.1186/s13046-023-02860-5
doi: 10.1186/s13046-023-02860-5
|
38 |
ZHOU C, WENG J, LIU C, et al. Disruption of SLFN11 Deficiency-Induced CCL2 Signaling and Macrophage M2 Polarization Potentiates Anti-PD-1 Therapy Efficacy in Hepatocellular Carcinoma[J]. Gastroenterology, 2023, 164(7): 1261-1278. doi:10.1053/j.gastro.2023.02.005
doi: 10.1053/j.gastro.2023.02.005
|
39 |
KO K P, HUANG Y, ZHANG S, et al. Key Genetic Determinants Driving Esophageal Squamous Cell Carcinoma Initiation and Immune Evasion[J]. Gastroenterology, 2023, 165(3): 613-628.e20. doi:10.1053/j.gastro.2023.05.030
doi: 10.1053/j.gastro.2023.05.030
|
40 |
PAN B, WAN T, ZHOU Y, et al. The MYBL2-CCL2 axis promotes tumor progression and resistance to anti-PD-1 therapy in ovarian cancer by inducing immunosuppressive macrophages[J]. Cancer Cell Int, 2023, 23(1): 248. doi:10.1186/s12935-023-03079-2
doi: 10.1186/s12935-023-03079-2
|