1 |
GONG Z, HAN S, LIANG T, et al. Mycobacterium tuberculosis effector PPE36 attenuates host cytokine storm damage via inhibiting macrophage M1 polarization [J]. J Cell Physiol, 2021, 236(11): 7405-7420. doi:10.1002/jcp.30411
doi: 10.1002/jcp.30411
|
2 |
REFAI A, GRITLI S, BARBOUCHE M R, et al. Mycobacterium tuberculosis Virulent Factor ESAT-6 Drives Macrophage Differentiation Toward the Pro-inflammatory M1 Phenotype and Subsequently Switches It to the Anti-inflammatory M2 Phenotype [J]. Front Cell Infect Microbiol, 2018, 8: 327. doi:10.3389/fcimb.2018.00327
doi: 10.3389/fcimb.2018.00327
|
3 |
UWISHEMA O, BADRI R, ONYEAKA H, et al. Fighting Tuberculosis in Africa: The Current Situation Amidst the COVID-19 Pandemic [J]. Disaster Med Public Health Prep, 2022, 8: 1-3. doi:10.1017/dmp.2022.142
doi: 10.1017/dmp.2022.142
|
4 |
LUO X, ZENG X, GONG L, et al. Nanomaterials in tuberculosis DNA vaccine delivery: historical perspective and current landscape [J]. Drug Deliv, 2022, 29(1): 2912-2924. doi:10.1080/10717544.2022.2120565
doi: 10.1080/10717544.2022.2120565
|
5 |
GETAHUN H, MATTEELLI A, CHAISSON R E, et al. Latent Mycobacterium tuberculosis infection [J]. N Engl J Med, 2015, 372(22): 2127-2135. doi:10.1056/nejmra1405427
doi: 10.1056/nejmra1405427
|
6 |
SAMTEN B, WANG X, BARNES P F. Immune regulatory activities of early secreted antigenic target of 6-kD protein of Mycobacterium tuberculosis and implications for tuberculosis vaccine design [J]. Tuberculosis (Edinb), 2011, 91 (supp-S1): S114-S118. doi:10.1016/j.tube.2011.10.020
doi: 10.1016/j.tube.2011.10.020
|
7 |
AGUILO N, GONZALO-ASENSIO J, ALVAREZ-ARGUEDAS S, et al. Reactogenicity to major tuberculosis antigens absent in BCG is linked to improved protection against Mycobacterium tuberculosis [J]. Nat Commun, 2017, 8: 16085. doi:10.1038/ncomms16085
doi: 10.1038/ncomms16085
|
8 |
MOGUCHE A O, MUSVOSVI M, PENN-NICHOLSON A, et al. Antigen Availability Shapes T Cell Differentiation and Function during Tuberculosis [J]. Cell Host Microbe, 2017, 21(6): 695-706,e5. doi:10.1016/j.chom.2017.05.012
doi: 10.1016/j.chom.2017.05.012
|
9 |
于佳佳, 唐神结. 巨噬细胞极化在结核病中的作用研究进展[J].中华临床感染病杂志. 2019, 12(3): 229-235. doi:10.3760/cma.j.issn.1674-2397.2019.03.014
doi: 10.3760/cma.j.issn.1674-2397.2019.03.014
|
10 |
刘艳华, 王若, 程小星. 活动性结核患者单核来源巨噬细胞中C-X-C型趋化因子受体4的表达研究[J]. 国际呼吸杂志.2017,37(3): 178-182. doi:10.3760/cma.j.issn.1673-436X.2017.03.005
doi: 10.3760/cma.j.issn.1673-436X.2017.03.005
|
11 |
FUNES S C, RIOS M, ESCOBAR-VERA J, et al. Implications of macrophage polarization in autoimmunity [J]. Immunology, 2018, 154(2): 186-195. doi:10.1111/imm.12910
doi: 10.1111/imm.12910
|
12 |
SHI L, JIANG Q, BUSHKIN Y, et al. Biphasic Dynamics of Macrophage Immunometabolism during Mycobacterium tuberculosis Infection [J]. mBio, 2019, 10(2): e02550. doi:10.1128/mbio.02550-18
doi: 10.1128/mbio.02550-18
|
13 |
李小鹏, 张伦理. 巨噬细胞极化现象与结核病的关系[J].中华微生物学和免疫学杂志. 2014, 34(3): 247-250.
|
14 |
朱锦琪, 陈剑波, 杨红忠, 等. M1型和M2型巨噬细胞及相关组织因子在结核性胸膜炎患者治疗前后的变化及意义[J]. 临床肺科杂志. 2021, 26(7): 1052-1057. doi:10.3969/j.issn.1009-6663.2021.07.019
doi: 10.3969/j.issn.1009-6663.2021.07.019
|
15 |
杨雨婷, 李玉洁, 杨国平. 结核分枝杆菌低氧反应蛋白的原核表达及对巨噬细胞ANA-1功能的影响[J] .微生物学免疫学进展, 2021, 49(05): 7-13.
|
16 |
王黎霞, 成诗明, 周林, 等. 结核病分类WS 196—2017 Classification of tuberculosis [J].中国感染控制杂志, 2018, 17(4): 367-368.
|
17 |
MARINO S, CILFONE N A, MATTILA J T, et al. Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection [J]. Infect Immun,2015,83(1): 324-338. doi:10.1128/iai.02494-14
doi: 10.1128/iai.02494-14
|
18 |
范琳琳, 郑青, 杨柳, 等. 结核分枝杆菌肝素结合血凝素对巨噬细胞极化的影响[J]. 中华微生物学和免疫学杂志, 2017, 37(12): 915-920.
|
19 |
CACCAMO N, DIELI F. Inflammation and the coagulation system in tuberculosis: Tissue Factor leads the dance [J]. Eur J Immunol, 2016, 46(2): 303-306. doi:10.1002/eji.201546225
doi: 10.1002/eji.201546225
|
20 |
SICA A, MANTOVANI A. Macrophage plasticity and polarization: in vivo veritas [J]. J Clin Invest, 2012, 122(3): 787-795. doi:10.1172/jci59643
doi: 10.1172/jci59643
|
21 |
LI Y, DENG Y, HE J. Monocyte-related gene biomarkers for latent and active tuberculosis [J]. Bioengineered, 2021, 12(2): 10799- 10811. doi:10.1080/21655979.2021.2003931
doi: 10.1080/21655979.2021.2003931
|
22 |
URBAN-SOLANO A, FLORES-GONZALEZ J, CRUZ-LAGUNAS A, et al. High levels of PF4, VEGF-A, and classical monocytes correlate with the platelets count and inflammation during active tuberculosis [J]. Front Immunol, 2022, 13: 1016472. doi:10.3389/fimmu.2022.1016472
doi: 10.3389/fimmu.2022.1016472
|
23 |
CHEN Y C, CHANG Y P, HSIAO C C, et al. Blood M2a monocyte polarization and increased formyl peptide receptor 1 expression are associated with progression from latent tuberculosis infection to active pulmonary tuberculosis disease [J]. Int J Infect Dis, 2020, 101: 210-219. doi:10.1016/j.ijid.2020.09.1056
doi: 10.1016/j.ijid.2020.09.1056
|
24 |
NAGABHUSHANAM V, SOLACHE A, TING L M, et al. Innate inhibition of adaptive immunity: Mycobacterium tuberculosis-induced IL-6 inhibits macrophage responses to IFN-gamma [J]. J Immunol, 2003, 171(9): 4750-4757. doi:10.4049/jimmunol.171.9.4750
doi: 10.4049/jimmunol.171.9.4750
|
25 |
MUSTAFA A S. Immunological Characterization of Proteins Expressed by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions Encoding the ESAT6-like Proteins [J]. Vaccines (Basel), 2021, 9(1) : 27. doi:10.3390/vaccines9010027
doi: 10.3390/vaccines9010027
|
26 |
LI F, LUO J, XU H, et al. Early secreted antigenic target 6-kDa from Mycobacterium tuberculosis enhanced the protective innate immunity of macrophages partially via HIF1alpha [J]. Biochem Biophys Res Commun, 2020, 522(1): 26-32. doi:10.1016/j.bbrc.2019.11.045
doi: 10.1016/j.bbrc.2019.11.045
|
27 |
FENG Y, YANG X, LIU Z, et al. Continuous treatment with recombinant Mycobacterium tuberculosis CFP-10-ESAT-6 protein activated human monocyte while deactivated LPS-stimulated macrophage [J]. Biochem Biophys Res Commun, 2008, 365(3): 534-540. doi:10.1016/j.bbrc.2007.11.022
doi: 10.1016/j.bbrc.2007.11.022
|