1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021,71(3):209-249.
|
2 |
HYUN S J, KIM E K, MOON H J, et al. Preoperative axillary lymph node evaluation in breast cancer patients by breast magnetic resonance imaging (MRI): Can breast MRI exclude advanced nodal disease?[J]. Eur Radiol, 2016,26(11):3865-3873.
|
3 |
GIULIANO A E, HUNT K K, BALLMAN K V, et al. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial[J]. JAMA, 2011,305(6):569-575.
|
4 |
LYMAN G H, SOMERFIELD M R, BOSSERMAN L D, et al. Sentinel Lymph Node Biopsy for Patients With Early-Stage Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update[J]. J Clin Oncol, 2017,35(5):561-564.
|
5 |
KOOTSTRA J, HOEKSTRA-WEEBERS J E, RIETMAN H, et al. Quality of life after sentinel lymph node biopsy or axillary lymph node dissection in stage I/II breast cancer patients: a prospective longitudinal study[J]. Ann Surg Oncol, 2008,15(9):2533-2541.
|
6 |
FEHM T, MAUL H, GEBAUER S, et al. Prediction of axillary lymph node status of breast cancer patients by tumorbiological factors of the primary tumor[J]. Strahlenther Onkol, 2005,181(9):580-586.
|
7 |
CHOI E J, YOUK J H, CHOI H, et al. Dynamic contrast-enhanced and diffusion-weighted MRI of invasive breast cancer for the prediction of sentinel lymph node status[J]. J Magn Reson Imaging, 2020,51(2):615-626.
|
8 |
RAHMAT K, MUMIN N A, HAMID M, et al. MRI Breast: Current Imaging Trends, Clinical Applications, and Future Research Directions[J]. Curr Med Imaging, 2022,18(13):1347-1361.
|
9 |
王保茎, 秦全波, 毛怡盛, 等. 动态增强磁共振联合DWI对乳腺癌淋巴结转移的诊断价值[J]. 实用癌症杂志, 2020,35(2):270-273.
|
10 |
SUROV A, MEYER H J, WIENKE A. Can apparent diffusion coefficient (ADC) distinguish breast cancer from benign breast findings? A meta-analysis based on 13 847 lesions[J]. BMC Cancer, 2019,19(1):955.
|
11 |
KOH D M, COLLINS D J. Diffusion-weighted MRI in the body: applications and challenges in oncology[J]. AJR Am J Roentgenol, 2007,188(6):1622-1635.
|
12 |
CHO P, PARK C S, PARK G E, et al. Diagnostic Usefulness of Diffusion-Weighted MRI for Axillary Lymph Node Evaluation in Patients with Breast Cancer[J]. Diagnostics (Basel), 2023,13(3):513.
|
13 |
KURT N, BINBOGA K B, GULSARAN U, et al. Diffusion tensor imaging and diffusion-weighted imaging on axillary lymph node status in breast cancer patients[J]. Diagn Interv Radiol, 2022,28(4):329-336.
|
14 |
YANG Z L, LI Y, ZHAN C A, et al. Evaluation of suspicious breast lesions with diffusion kurtosis MR imaging and connection with prognostic factors[J]. Eur J Radiol, 2021,145:110014.
|
15 |
SUN J H, JIANG L, GUO F, et al. Diagnostic significance of apparent diffusion coefficient values with diffusion weighted MRI in breast cancer: a meta- analysis[J]. Asian Pac J Cancer Prev, 2014,15(19):8271-8277.
|
16 |
LE BIHAN D, BRETON E, LALLEMAND D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986,161(2):401-407.
|
17 |
LE BIHAN D, TURNER R. The capillary network: a link between IVIM and classical perfusion[J]. Magn Reson Med, 1992,27(1):171-178.
|
18 |
ZHU Y, LI X, WANG F, et al. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging in characterization of axillary lymph nodes: Preliminary animal experience[J]. Magn Reson Imaging, 2018,52:46-52.
|
19 |
ZHAO M, WU Q, GUO L, et al. Magnetic resonance imaging features for predicting axillary lymph node metastasis in patients with breast cancer[J]. Eur J Radiol, 2020,129:109093.
|
20 |
ZHOU Z, CHEN Y, ZHAO F, et al. Predictive value of intravoxel incoherent motion combined with diffusion kurtosis imaging for breast cancer axillary lymph node metastasis: a retrospective study[J]. Acta Radiol, 2023,64(3):951-961.
|
21 |
LIU Y, LUO H, WANG C, et al. Diagnostic performance of T2-weighted imaging and intravoxel incoherent motion diffusion-weighted MRI for predicting metastatic axillary lymph nodes in T1 and T2 stage breast cancer[J]. Acta Radiol, 2022,63(4):447-457.
|
22 |
BENNETT K M, SCHMAINDA K M, BENNETT R T, et al. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model[J]. Magn Reson Med, 2003,50(4):727-734.
|
23 |
SUO S, CHENG F, CAO M, et al. Multiparametric diffusion-weighted imaging in breast lesions: Association with pathologic diagnosis and prognostic factors[J]. J Magn Reson Imaging, 2017,46(3):740-750.
|
24 |
MAZAHERI Y, AFAQ A, ROWE D B, et al. Diffusion-weighted magnetic resonance imaging of the prostate: improved robustness with stretched exponential modeling[J]. J Comput Assist Tomogr, 2012,36(6):695-703.
|
25 |
WINFIELD J M, DESOUZA N M, PRIEST A N, et al. Modelling DW-MRI data from primary and metastatic ovarian tumours[J]. Eur Radiol, 2015,25(7):2033-2040.
|
26 |
PANEK R, BORRI M, ORTON M, et al. Evaluation of diffusion models in breast cancer[J]. Med Phys, 2015,42(8):4833-4839.
|
27 |
SUO S, YIN Y, GENG X, et al. Diffusion-weighted MRI for predicting pathologic response to neoadjuvant chemotherapy in breast cancer: evaluation with mono-, bi-, and stretched-exponential models[J]. J Transl Med, 2021,19(1):236.
|
28 |
KIM Y, KIM S H, LEE H W, et al. Intravoxel incoherent motion diffusion-weighted MRI for predicting response to neoadjuvant chemotherapy in breast cancer[J]. Magn Reson Imaging, 2018,48:27-33.
|
29 |
ALMUTLAQ Z M, WILSON D J, BACON S E, et al. Evaluation of Monoexponential, Stretched-Exponential and Intravoxel Incoherent Motion MRI Diffusion Models in Early Response Monitoring to Neoadjuvant Chemotherapy in Patients With Breast Cancer-A Preliminary Study[J]. J Magn Reson Imaging, 2022,56(4):1079-1088.
|
30 |
BEDAIR R, PRIEST A N, PATTERSON A J, et al. Assessment of early treatment response to neoadjuvant chemotherapy in breast cancer using non-mono-exponential diffusion models: a feasibility study comparing the baseline and mid-treatment MRI examinations[J]. Eur Radiol, 2017,27(7):2726-2736.
|
31 |
JENSEN J H, HELPERN J A, RAMANI A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005,53(6):1432-1440.
|
32 |
JENSEN J H, HELPERN J A. MRI quantification of non-Gaussian water diffusion by kurtosis analysis[J]. NMR Biomed, 2010,23(7):698-710.
|
33 |
HONDA M, IIMA M, KATAOKA M, et al. Biomarkers Predictive of Distant Disease-free Survival Derived from Diffusion-weighted Imaging of Breast Cancer[J]. Magn Reson Med Sci, 2023,22(4):469-476.
|
34 |
TANG W, ZHOU H, QUAN T, et al. XGboost Prediction Model Based on 3.0T Diffusion Kurtosis Imaging Improves the Diagnostic Accuracy of MRI BiRADS 4 Masses[J]. Front Oncol, 2022,12:833680.
|
35 |
HUANG Y, LIN Y, HU W, et al. Diffusion Kurtosis at 3.0T as an in vivo Imaging Marker for Breast Cancer Characterization: Correlation With Prognostic Factors[J]. J Magn Reson Imaging, 2019,49(3):845-856.
|