The Journal of Practical Medicine ›› 2026, Vol. 42 ›› Issue (2): 266-275.doi: 10.3969/j.issn.1006-5725.2026.02.012
• Chronic Disease Control • Previous Articles
Yongsi LIU1,Yingmin DENG1,Marsu VANAKHUN2,Ruijing LI1,Wen SHI3,Chuyun CHEN3(
)
Received:2025-09-25
Revised:2025-11-09
Accepted:2025-11-17
Online:2026-01-25
Published:2026-01-22
Contact:
Chuyun CHEN
E-mail:chencyzwl@126.com
CLC Number:
Yongsi LIU,Yingmin DENG,Marsu VANAKHUN,Ruijing LI,Wen SHI,Chuyun CHEN. Construction of a risk prediction model for type 2 diabetic kidney disease based on the inflammatory indices SII and SIRI[J]. The Journal of Practical Medicine, 2026, 42(2): 266-275.
Tab.1
Comparison of baseline data between the training set and the test set"
| 临床变量 | 训练集(n = 460) | 测试集(n = 198) | Z/χ2 值 | P值 |
|---|---|---|---|---|
| 性别(男/女)/例 | 229/231 | 102/96 | 0.104 | 0.747 |
| 年龄/岁 | 67.50(60.00,75.00) | 66.00(60.00,74.75) | -0.037 | 0.345 |
| 白细胞计数/(× 109·L-1) | 7.38(6.10,8.90) | 7.25(6.18,8.34) | -0.036 | 0.354 |
| 中性粒细胞计数/(× 109·L-1) | 4.62(3.62,5.94) | 4.46(3.58,5.56) | -0.051 | 0.193 |
| 淋巴细胞计数/(× 109·L-1) | 1.77(1.36,2.31) | 1.89(1.38,2.31) | 0.037 | 0.348 |
| 单核细胞计数/(× 109·L-1) | 0.52(0.41,0.68) | 0.52(0.41,0.66) | 0.009 | 0.378 |
| 血小板计数/(× 109·L-1) | 230.50(193.75,284.00) | 226.50(188.25,289.75) | -0.034 | 0.820 |
| 血红蛋白/(g/L) | 126.00(110.00,136.00) | 126.00(114.00,137.75) | 0.020 | 0.614 |
| 随机血糖/(mmol/L) | 7.26(5.74,9.44) | 6.96(5.64,8.73) | -0.037 | 0.342 |
| 肌酐/(μmol/L) | 70.55(57.10,94.50) | 71.00(57.00,88.95) | -0.010 | 0.791 |
| 尿素/(mmol/L) | 5.88(4.58,7.78) | 5.93(4.52,7.28) | -0.023 | 0.552 |
| 胱抑素C/(mg/L) | 1.12(0.95,1.45) | 1.07(0.94,1.31) | -0.047 | 0.230 |
| SII | 600.36(390.18,967.44) | 539.74(364.72,828.40) | -0.049 | 0.209 |
| SIRI | 1.33(0.81,2.16) | 1.28(0.79,2.00) | -0.024 | 0.538 |
| DKD/[例(%)] | 73(15.9) | 29(14.6) | 0.078 | 0.747 |
Tab.2
LASSO analysis of the coefficient values of each feature"
| 项目 | λ = 0.01 | λ = 0.005 | λ(min) = 0.002 17 | λ(1se) = 0.000 23 | λ = 0.000 1 |
|---|---|---|---|---|---|
| 白细胞计数 | 0 | 0 | 0 | 0 | 0.161 3 |
| 血小板计数 | 0 | 0 | 0.002 1 | 0.004 2 | 0.003 8 |
| 中性粒细胞计数 | 0 | 0 | -0.000 7 | -0.111 8 | -0.145 |
| 淋巴细胞计数 | 0 | 0 | 0 | -0.043 | -0.054 6 |
| 单核细胞计数 | 0 | 0.001 3 | 0.009 0 | 0.002 4 | -0.001 |
| 血红蛋白 | -0.026 2 | -0.030 1 | -0.031 8 | -0.031 6 | -0.031 6 |
| 随机血糖 | -0.002 9 | -0.007 4 | -0.009 9 | -0.012 2 | -0.012 4 |
| 肌酐 | 0.071 7 | 0.075 0 | 0.077 5 | 0.078 9 | 0.079 2 |
| 胱抑素C | 0.115 3 | 0.115 2 | 0.114 9 | 0.112 6 | 0.111 9 |
| 尿素 | 0.052 5 | 0.056 0 | 0.058 7 | 0.060 7 | 0.060 8 |
| SII | -0.007 0 | -0.009 7 | -0.008 2 | -0.008 6 | -0.008 0 |
| SIRI | -0.002 0 | -0.007 5 | -0.017 5 | -0.026 9 | -0.028 4 |
Tab.4
Performance comparison of the four models on the training set and the test set"
| 数据集 | 模型 | AUC(95%CI) | 准确度 | F1分数 | 敏感度 | 特异度 |
|---|---|---|---|---|---|---|
| 训练集 | LR | 0.952(0.916 ~ 0.979) | 0.937 | 0.768 | 0.658 | 0.990 |
| RF | 1.000(1.000 ~ 1.000) | 1.000 | 1.000 | 1.000 | 1.000 | |
| SVM | 0.948(0.912 ~ 0.976) | 0.896 | 0.510 | 0.342 | 1.000 | |
| XGBoost | 1.000(1.000 ~ 1.000) | 1.000 | 1.000 | 1.000 | 1.000 | |
| 测试集 | LR | 0.914(0.836 ~ 0.974) | 0.904 | 0.627 | 0.552 | 0.964 |
| RF | 0.943(0.889 ~ 0.982) | 0.924 | 0.737 | 0.724 | 0.959 | |
| SVM | 0.929(0.862 ~ 0.977) | 0.899 | 0.474 | 0.310 | 1.000 | |
| XGBoost | 0.917(0.851 ~ 0.973) | 0.934 | 0.772 | 0.759 | 0.964 |
| [1] | International Diabetes Federation.IDF Diabetes Atlas 2025[EB/OL]. (2025-10-10)[2025-10-28]. |
| [2] |
中华医学会糖尿病学分会. 中国糖尿病防治指南(2024版)[J]. 中华糖尿病杂志,2025,17(1):16-139. doi:10.3760/cma.j.cn115791-20241203-00705 .
doi: 10.3760/cma.j.cn115791-20241203-00705 |
| [3] |
ELENDU C, JOHN OKAH M, FIEMOTONGHA K D J, et al. Comprehensive advancements in the prevention and treatment of diabetic nephropathy: A narrative review[J]. Medicine, 2023, 102(40): e35397. doi:10.1097/MD.0000000000035397 .
doi: 10.1097/MD.0000000000035397 |
| [4] |
《糖尿病肾脏病早期筛查与管理专家共识》编写组. 糖尿病肾脏病早期筛查与管理专家共识(2025版)[J]. 中华糖尿病杂志, 2025, 17(7): 786-800. doi:10.3760/cma.j.cn115791-20241231-00768 .
doi: 10.3760/cma.j.cn115791-20241231-00768 |
| [5] |
ZHOU Y, ZHANG Y, CHEN J, et al. Diagnostic value of α1-MG and URBP in early diabetic renal impairment[J]. Front Physiol, 2023, 14: 1173982. doi:10.3389/fphys.2023.1173982 .
doi: 10.3389/fphys.2023.1173982 |
| [6] |
LI X, WANG L, LIU M, et al. Association between neutrophil-to-lymphocyte ratio and diabetic kidney disease in type 2 diabetes mellitus patients: A cross-sectional study[J]. Front Endocrinol, 2024, 14: 1285509. doi:10.3389/fendo.2023.1285509 .
doi: 10.3389/fendo.2023.1285509 |
| [7] |
MORO-VALDEZATE D, MARTÍN-ARÉVALO J, CÓZAR-LOZANO C, et al. Prognostic value of routine blood biomarkers in 3-year survival of resectable colorectal cancer patients: A prognostic nomogram for clinical practice[J]. Int J Colorectal Dis, 2025, 40(1): 58. doi:10.1007/s00384-025-04848-3 .
doi: 10.1007/s00384-025-04848-3 |
| [8] |
万梦园, 刘书娟, 刘晶晶, 等. 术前系统免疫炎症指数与胰腺癌患者预后的关系[J]. 实用医学杂志, 2021, 37(19): 2482-2486.doi:10.3969/j.issn.1006-5725.2021.19.010 .
doi: 10.3969/j.issn.1006-5725.2021.19.010 |
| [9] |
朱吉玥, 张波, 李亚茹, 等. 全身炎症反应指数对早期结直肠癌内镜黏膜下剥离术后非治愈性切除的预测价值[J]. 实用医学杂志, 2025, 41(5): 716-723. doi:10.3969/j.issn.1006-5725.2025.05.015 .
doi: 10.3969/j.issn.1006-5725.2025.05.015 |
| [10] |
XIA Y, XIA C, WU L, et al. Systemic immune inflammation index (SII), system inflammation response index (SIRI) and risk of all-cause mortality and cardiovascular mortality: A 20-year follow-up cohort study of 42, 875 US adults[J]. J Clin Med, 2023, 12(3): 1128. doi:10.3390/jcm12031128 .
doi: 10.3390/jcm12031128 |
| [11] |
ÇINAROĞLU O S, ACAR H, ÇAMYAR H, et al. The success of SII, MII-1, MII-2, MII-3, and QT dispersion in predicting the walled-off pancreatic necrosis development in acute pancreatitis in the emergency department: An observational study[J]. Medicine, 2024, 103(25): e38599. doi:10.1097/MD.0000000000038599 .
doi: 10.1097/MD.0000000000038599 |
| [12] |
LI X, CUI L, XU H. Association between systemic inflammation response index and chronic kidney disease: A population-based study[J]. Front Endocrinol, 2024, 15: 1329256. doi:10.3389/fendo.2024.1329256 .
doi: 10.3389/fendo.2024.1329256 |
| [13] |
SONG Y, ZHAO Y, SHU Y, et al. Combination model of neutrophil to high-density lipoprotein ratio and system inflammation response index is more valuable for predicting peripheral arterial disease in type 2 diabetic patients: A cross-sectional study[J]. Front Endocrinol, 2023, 14: 1100453. doi:10.3389/fendo. 2023. 1100453 .
doi: 10.3389/fendo. 2023. 1100453 |
| [14] |
SABERI-KARIMIAN M, KHORASANCHI Z, GHAZIZADEH H, et al. Potential value and impact of data mining and machine learning in clinical diagnostics[J]. Crit Rev Clin Lab Sci, 2021, 58(4): 275-296. doi:10.1080/10408363.2020.1857681 .
doi: 10.1080/10408363.2020.1857681 |
| [15] |
ZOU Y, ZHAO L, ZHANG J, et al. Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease[J]. Ren Fail, 2022, 44(1): 562-570. doi:10.1080/0886022X.2022.2056053 .
doi: 10.1080/0886022X.2022.2056053 |
| [16] |
ZOU L X, WANG X, HOU Z L, et al. Machine learning algorithms for diabetic kidney disease risk predictive model of Chinese patients with type 2 diabetes mellitus[J]. Ren Fail, 2025, 47(1): 2486558. doi:10.1080/0886022X.2025.2486558 .
doi: 10.1080/0886022X.2025.2486558 |
| [17] |
ZHOU Y C, LIU J M, ZHAO Z P, et al. The national and provincial prevalence and non-fatal burdens of diabetes in China from 2005 to 2023 with projections of prevalence to 2050[J]. Mil Med Res, 2025, 12(1): 28. doi:10.1186/s40779-025-00615-1 .
doi: 10.1186/s40779-025-00615-1 |
| [18] |
WANG L, PENG W, ZHAO Z, et al. Prevalence and Treatment of Diabetes in China, 2013-2018[J]. JAMA, 2021, 326(24):2498-2506. doi:10.1001/jama.2021.22208. doi:10.3760/cma.j.issn.1674-5809.2019.05.003 .
doi: 10.1001/jama.2021.22208. doi:10.3760/cma.j.issn.1674-5809.2019.05.003 |
| [19] |
AFKARIAN M, SACHS M C, KESTENBAUM B, et al. Kidney disease and increased mortality risk in type 2 diabetes[J]. J Am Soc Nephrol, 2013, 24(2): 302-308. doi:10.1681/ASN. 2012070718 .
doi: 10.1681/ASN. 2012070718 |
| [20] |
BONNER R, ALBAJRAMI O, HUDSPETH J, et al. Diabetic kidney disease[J]. Prim Care Clin Off Pract, 2020, 47(4): 645-659. doi:10.1016/j.pop.2020.08.004 .
doi: 10.1016/j.pop.2020.08.004 |
| [21] |
龚伟, 何敏, 俞一飞, 等. 住院2型糖尿病合并正常白蛋白尿的慢性肾脏病患者临床特征及危险因素分析[J]. 中华糖尿病杂志, 2018, 10(4): 269-273. doi:10.3760/cma.j.issn.1674-5809.2018.04.007 .
doi: 10.3760/cma.j.issn.1674-5809.2018.04.007 |
| [22] |
NAGENDRAN M, CHEN Y, LOVEJOY C A, et al. Artificial intelligence versus clinicians: Systematic review of design, reporting standards, and claims of deep learning studies[J]. BMJ, 2020, 368: m689. doi:10.1136/bmj.m689 .
doi: 10.1136/bmj.m689 |
| [23] |
BELLE V, PAPANTONIS I. Principles and practice of explainable machine learning[J]. Front Big Data, 2021, 4: 688969. doi:10.3389/fdata.2021.688969 .
doi: 10.3389/fdata.2021.688969 |
| [24] |
DELPINO F M, COSTA Â K, FARIAS S R, et al. Machine learning for predicting chronic diseases: A systematic review[J]. Public Health, 2022, 205: 14-25. doi:10.1016/j.puhe.2022.01.007 .
doi: 10.1016/j.puhe.2022.01.007 |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

