The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (4): 615-620.doi: 10.3969/j.issn.1006-5725.2025.04.023
• Reviews • Previous Articles
Dengxinjie SHI1,Hongjin SHI1,Nan ZHANG2,Shi FU1,Qun WANG1,Haonan DONG1,Jiansong WANG1,Haidan LI1,Haifeng. WANG1()
Received:
2024-11-14
Online:
2025-02-25
Published:
2025-02-28
Contact:
Haifeng. WANG
E-mail:wanghaifeng@kmmu.edu.cn
CLC Number:
Dengxinjie SHI,Hongjin SHI,Nan ZHANG,Shi FU,Qun WANG,Haonan DONG,Jiansong WANG,Haidan LI,Haifeng. WANG. The biological role of YTHDF2 and its application in tumors[J]. The Journal of Practical Medicine, 2025, 41(4): 615-620.
Tab.1
YTHDF2's role and research progress in various tumors"
肿瘤类型 | YTHDF2表达情况 | 在肿瘤进展 中的作用 | 分子机制 | 临床意义 | 参考 文献 |
---|---|---|---|---|---|
胃癌(GC) | 上调 | [ | |||
结直肠癌 (CRC) | 下调 | [ | |||
肝细胞癌(HCC) | 下调 | 制细胞生长和血管生成 | [ | ||
胰腺癌 (PC) | 上调 | 靶向PIK3CB促进增殖和EMT | [ | ||
非小细胞肺癌 (NSCLC) | 上调 | [ | |||
急性髓性白血病 (AML) | 上调 | 缩短m6A转录本半衰期,增强白血病干细胞功能 | 靶向YTHDF2可能增强造血干细胞扩增 | [ | |
前列腺癌 (PCa) | [ | ||||
三阴性乳腺癌 (TNBC) | 上调 | 促进MYC驱动的TNBC细胞增殖和抑制凋亡 | 与不良预后相关 | [ | |
宫颈癌 (CC) | 增加GAS5表达和稳定性,抑制增殖和迁移 | [ | |||
胶质母细胞瘤 (GBM) | [ | ||||
黑色素瘤 | [ |
1 |
CHEN Y, LIN Y, SHU Y, et al. Interaction between N6-methyladenosine (m6A) modification and noncoding RNAs in cancer[J]. Mol Cancer, 2020, 19(1 ): 94. doi:10.1186/s12943-020-01207-4
doi: 10.1186/s12943-020-01207-4 |
2 |
DU H, ZHAO Y, HE J, et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4⁃NOT deadenylase complex[J]. Nat Commun, 2016, 7: 12626. doi:10.1038/ncomms12626
doi: 10.1038/ncomms12626 |
3 |
CHEN X, ZHOU X, WANG X. m6A binding protein YTHDF2 in cancer[J]. Exp Hematol Oncol, 2022, 11(1): 21. doi:10.1186/s40164-022-00269-y
doi: 10.1186/s40164-022-00269-y |
4 |
CARDELLI M, MARCHEGIANI F, CAVALLONE L, et al. A Polymorphism of the YTHDF2 Gene (1p35) Located in an Alu-Rich Genomic Domain Is Associated With Human Longevity[J]. J Gerontol A Biol Sci Med Sci, 2006, 61(6): 547-556. doi:10.1093/gerona/61.6.547
doi: 10.1093/gerona/61.6.547 |
5 |
WANG J Y, LU A Q. The biological function of m6A reader YTHDF2 and its role in human disease[J]. Cancer Cell Int, 2021, 21: 109. doi:10.1186/s12935-021-01807-0
doi: 10.1186/s12935-021-01807-0 |
6 |
JIN D, GUO J, WU Y, et al. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC[J]. Mol Cancer, 2020, 19(1): 40. doi:10.1186/s12943-020-01161-1
doi: 10.1186/s12943-020-01161-1 |
7 |
EINSTEIN J M, PERELIS M, CHAIM I A, et al. Inhibition of YTHDF2 triggers proteotoxic cell death in MYC-driven breast cancer[J]. Mol Cell, 2021, 81(15): 3048-3064.e9. doi:10.1016/j.molcel.2021.06.014
doi: 10.1016/j.molcel.2021.06.014 |
8 |
LI J, XIE H, YING Y, et al. YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer[J]. Mol Cancer, 2020, 19(1): 152. doi:10.1186/s12943-020-01267-6
doi: 10.1186/s12943-020-01267-6 |
9 |
CHEN Z, SHAO Y L, WANG L L, et al. YTHDF2 is a potential target of AML1/ETO-HIF1α loop-mediated cell proliferation in t(8;21) AML[J]. Oncogene, 2021, 40(22): 3786-3798. doi:10.1038/s41388-021-01818-1
doi: 10.1038/s41388-021-01818-1 |
10 |
YAN J, HUANG X, ZHANG X, et al. LncRNA LINC00470 promotes the degradation of PTEN mRNA to facilitate malignant behavior in gastric cancer cells[J]. Biochem Biophys Res Commun, 2020, 521(4): 887-893. doi:10.1016/j.bbrc.2019.11.016
doi: 10.1016/j.bbrc.2019.11.016 |
11 |
YANG X, ZHANG S, HE C, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST[J]. Mol Cancer, 2020,19(1):46. doi:10.1186/s12943-020-1146-4
doi: 10.1186/s12943-020-1146-4 |
12 |
HOU J, ZHANG H, LIU J, et al. YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma[J]. Mol Cancer, 2019, 18(1): 163. doi:10.1186/s12943-019-1082-3
doi: 10.1186/s12943-019-1082-3 |
13 |
CHEN J, SUN Y, XU X, et al. YTH domain family 2 orchestrates epithelial-mesenchymal transition/proliferation dichotomy in pancreatic cancer cells[J]. Cell Cycle, 2017, 16(23): 2259-2271. doi:10.1080/15384101.2017.1380125
doi: 10.1080/15384101.2017.1380125 |
14 | WANG X, ZHANG J, WANG Y. Long noncoding RNA GAS5-AS1 suppresses growth and metastasis of cervical cancer by increasing GAS5 stability[J]. Am J Transl Res, 2019, 11(8): 4909-4921. |
15 |
DIXIT D, PRAGER B C, GIMPLE R C, et al. The RNA m6A Reader YTHDF2 Maintains Oncogene Expression and Is a Targetable Dependency in Glioblastoma Stem Cells[J]. Cancer Discov, 2021, 11(2): 480-499. doi:10.1158/2159-8290.cd-20-0331
doi: 10.1158/2159-8290.cd-20-0331 |
16 |
YU J, CHAI P, XIE M, et al. Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma[J]. Genome Biol, 2021, 22(1): 85. doi:10.1186/s13059-021-02308-z
doi: 10.1186/s13059-021-02308-z |
17 |
WANG X, LU Z, GOMEZ A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481): 117-120. doi:10.1038/nature12730
doi: 10.1038/nature12730 |
18 |
ZHU T, ROUNDTREE I A, WANG P, et al. Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine[J]. Cell Res, 2014, 24(12): 1493-1496. doi:10.1038/cr.2014.152
doi: 10.1038/cr.2014.152 |
19 |
PARK O H, HA H, LEE Y, et al. Endoribonucleolytic Cleavage of m6A-Containing RNAs by RNase P/MRP Complex[J]. Mol Cell, 2019, 74(3): 494-507.e8. doi:10.1016/j.molcel.2019.02.034
doi: 10.1016/j.molcel.2019.02.034 |
20 |
FEI Q, ZOU Z, ROUNDTREE I A, et al. YTHDF2 promotes mitotic entry and is regulated by cell cycle mediators[J]. PLoS Biol, 2020, 18(4): e3000664. doi:10.1371/journal.pbio.3000664
doi: 10.1371/journal.pbio.3000664 |
21 |
LI H, ZHANG N, JIAO X, et al. Downregulation of microRNA-6125 promotes colorectal cancer growth through YTHDF2-dependent recognition of N6-methyladenosine-modified GSK3β[J]. Clin Transl Med, 2021, 11(10): e602. doi:10.1002/ctm2.602
doi: 10.1002/ctm2.602 |
22 |
WANG W, SHAO F, YANG X, et al. METTL3 promotes tumour development by decreasing APC expression mediated by APC mRNA N6-methyladenosine-dependent YTHDF binding[J]. Nat Commun, 2021, 12(1): 3803. doi:10.1038/s41467-021-24860-9
doi: 10.1038/s41467-021-24860-9 |
23 |
KORINEK V, BARKER N, MORIN P J, et al. Constitutive Transcriptional Activation by a β-Catenin-Tcf Complex in APC-/- Colon Carcinoma[J]. Science, 1997, 275(5307): 1784-1787. doi:10.1126/science.275.5307.1784
doi: 10.1126/science.275.5307.1784 |
24 |
YU P, XU T, MA W, et al. PRMT6-mediated transcriptional activation of ythdf2 promotes glioblastoma migration, invasion, and emt via the wnt-β-catenin pathway[J]. J Exp Clin Cancer Res, 2024, 43(1): 116. doi:10.1186/s13046-024-03038-3
doi: 10.1186/s13046-024-03038-3 |
25 |
LIU R, LI W, TAO B, et al. Tyrosine phosphorylation activates 6-phosphogluconate dehydrogenase and promotes tumor growth and radiation resistance[J]. Nat Commun, 2019, 10(1): 991. doi:10.1038/s41467-019-08921-8
doi: 10.1038/s41467-019-08921-8 |
26 |
SHENG H, LI Z, SU S, et al. YTH domain family 2 promotes lung cancer cell growth by facilitating 6-phosphogluconate dehydrogenase mRNA translation[J]. Carcinogenesis, 2020, 41(5): 541-550. doi:10.1093/carcin/bgz152
doi: 10.1093/carcin/bgz152 |
27 |
ITALIANI P, BORASCHI D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation[J]. Front Immunol, 2014, 5:514. doi:10.3389/fimmu.2014.00514
doi: 10.3389/fimmu.2014.00514 |
28 |
MA S, SUN B, DUAN S, et al. YTHDF2 orchestrates tumor-associated macrophage reprogramming and controls antitumor immunity through CD8+ T cells[J]. Nat Immunol, 2023, 24(2): 255-266. doi:10.1038/s41590-022-01398-6
doi: 10.1038/s41590-022-01398-6 |
29 |
ZHANG L, DOU X, ZHENG Z, et al. YTHDF2/m6 A/NF-κB axis controls anti-tumor immunity by regulating intratumoral Tregs[J]. EMBO J, 2023, 42(15): e113126. doi:10.15252/embj.2022113126
doi: 10.15252/embj.2022113126 |
30 |
GRINBERG-BLEYER Y, CARON R, SEELEY J J, et al. The Alternative NF-κB Pathway in Regulatory T Cell Homeostasis and Suppressive Function[J]. J Immunol, 2018, 200(7): 2362-2371. doi:10.4049/jimmunol.1800042
doi: 10.4049/jimmunol.1800042 |
31 |
BETZLER A C, THEODORAKI M N, SCHULER P J, et al. NF-κB and Its Role in Checkpoint Control[J]. Int J Mol Sci, 2020, 21(11): 3949. doi:10.3390/ijms21113949
doi: 10.3390/ijms21113949 |
32 | 张娅威, 施鸿金, 付什, 等. TIGIT的生物学作用及其在膀胱癌中应用的研究进展[J]. 实用医学杂志, 2024,40(12): 1762-1766. |
33 |
ZHANG L, LI Y, ZHOU L, et al. The m6A Reader YTHDF2 Promotes Bladder Cancer Progression by Suppressing RIG-I–Mediated Immune Response[J]. Cancer Res, 2023, 83(11): 1834-1850. doi:10.1158/0008-5472.can-22-2485
doi: 10.1158/0008-5472.can-22-2485 |
34 | 王月帆, 葛春梅, 尹昊瓒, 等. m6A甲基化修饰识别蛋白YTHDF2在肝癌组织中的表达及临床意义[J]. 现代生物医学进展, 2021, 21(9): 1601-1606. |
35 | 胡宽,姚磊,李娟妮,等. YTH基因家族在肝癌中的表达和预后价值[J]. 中国普通外科杂志, 2021, 30(7): 836-846. |
36 | 马琰迪, 卢香云, 何尚峰, 等. m6A甲基化修饰结合蛋白YTHDF2在食管癌组织中的表达及其对食管癌细胞增殖和迁移的影响[J]. 吉林大学学报(医学版), 2022, 48(4): 962-970. |
37 |
LIU W, LIU C, YOU J, et al. Pan-cancer analysis identifies YTHDF2 as an immunotherapeutic and prognostic biomarker[J]. Front Cell Dev Biol, 2022, 10: 954214. doi:10.3389/fcell.2022.954214
doi: 10.3389/fcell.2022.954214 |
38 | 孟肖娜, 孙旭, 刘怀民. 免疫检查点抑制剂相关结肠炎的研究进展[J]. 实用医学杂志, 2024,40(9): 1314-1319. |
39 |
HUANG C S, ZHU Y Q, XU Q C, et al. YTHDF2 promotes intrahepatic cholangiocarcinoma progression and desensitises cisplatin treatment by increasing CDKN1B mRNA degradation[J]. Clin Transl Med, 2022, 12(6): e848. doi:10.1002/ctm2.848
doi: 10.1002/ctm2.848 |
40 |
WANG L, DOU X, CHEN S, et al. YTHDF2 inhibition potentiates radiotherapy antitumor efficacy[J]. Cancer Cell, 2023, 41(7): 1294-1308.e8. doi:10.1016/j.ccell.2023.04.019
doi: 10.1016/j.ccell.2023.04.019 |
41 |
SU G, LIU T, HAN X, et al. YTHDF2 is a Potential Biomarker and Associated with Immune Infiltration in Kidney Renal Clear Cell Carcinoma[J]. Front Pharmacol, 2021, 12: 709548. doi:10.3389/fphar.2021.709548
doi: 10.3389/fphar.2021.709548 |
[1] | Jiahao CHEN,Yong HUANG,Ruibing FENG,Xiaofeng DUAN,Gang WU,Yizheng HUANG,Haitao ZHANG,Chao LI,Yinshuai DING,Hao. HU. Treatment effect and safety analysis of intraspinal tumor under 3D microscope [J]. The Journal of Practical Medicine, 2025, 41(3): 371-378. |
[2] | Yiyang ZHAI,Yunyi MA,Junying ZHAI,Hongli NIU,Ying. WANG. The relationship between tumor necrosis factor alpha inducible protein 8 family members 2, cell proliferation nuclear antigen expression levels, and clinical pathological parameters and prognosis in endometrial cancer tissue [J]. The Journal of Practical Medicine, 2025, 41(3): 379-384. |
[3] | Qiang FU,Zhongqi LU,Ying CHANG,Tiefeng JIN,Meihua. ZHANG. Research progress on the antitumor effects of immune checkpoint inhibitors [J]. The Journal of Practical Medicine, 2025, 41(2): 288-293. |
[4] | Wei HE,Liping LIU,Jingwei ZHUO,Xiaodong ZHANG,Tong YANG,Jubin. FENG. CCR5 blockade reduces tumor growth by inducing apoptosis and impairing immunosuppression of tumor microenvironment [J]. The Journal of Practical Medicine, 2024, 40(9): 1204-1210. |
[5] | Xiya MA,Hu JI,Zehua ZHU,Bo PAN,Qiang XIE,Xiaobo. YAO. The predictive value of 18F⁃FDG PET/CT metabolic heterogeneity parameters combined with clinical features for the prognosis of esophageal squamous cell carcinoma before definitive radiochemotherapy [J]. The Journal of Practical Medicine, 2024, 40(7): 966-971. |
[6] | Ting XU,Wei HUANG,Li YANG,Hao. YU. Tumor endothelial markers1 mediate endothelial cell angiogenesis and heart failure myocardial remodeling via MAPKs pathway [J]. The Journal of Practical Medicine, 2024, 40(6): 780-786. |
[7] | Yaqi WANG,Wanfu LI,Maimaijiang AYIGUZALI,Kramer ANIWAR,Jiarong FAN,Peng LIANG,Samusiddin. NAFISA. Study on the effect of miR⁃20a⁃5p on human nephroblastoma cell WiT49 transplanted in nude mice [J]. The Journal of Practical Medicine, 2024, 40(4): 490-495. |
[8] | Yigang TAN,Haobin KUANG,Hongmei FU,Chunyan LI,Xiaobing ZHAO,Lijing XUE. Analysis of clinical characteristics of 33 cases of tuberculosis complicated by tumor necrosis factor⁃α inhibitor in autoimmune diseases [J]. The Journal of Practical Medicine, 2024, 40(3): 378-383. |
[9] | Liping CHEN,Juyu LUO,Zhangyan PENG,Xiulan WU,Yuhong YANG,Lianyan SHI,Xiaoyun LI,Ling. WANG. Correlation between the ratio of tumor volume to uterine volume and the expression of Ki⁃67 and p16 protein in tissues with the pathological features and recurrence of endometrial carcinoma [J]. The Journal of Practical Medicine, 2024, 40(23): 3367-3372. |
[10] | Xiao XIAO,Fangyi LONG,Gang. WANG. Dual role and new strategies of pyroptosis in cancer therapy [J]. The Journal of Practical Medicine, 2024, 40(23): 3419-3426. |
[11] | Kunyuan HUANG,Kehua JIANG,Qing WANG. Research progress of S100A9 in renal diseases [J]. The Journal of Practical Medicine, 2024, 40(22): 3251-3255. |
[12] | Xing LI,Youcai WANG,Yongchao XU,Ligong TANG,Fangyuan. CHENG. Application of prophylactic ileostomy through right lower abdominal specimen extraction incision in laparoscopic rectal low anterior resection [J]. The Journal of Practical Medicine, 2024, 40(19): 2720-2725. |
[13] | Rui WANG,Duo LI,Zhao PENG,Lijun CUI,Xiang ZHANG,Kaili FAN,Wenyan. WU. Effect of endoscopic tumor resection by submucosal tunnel on recurrence in patients with submucosal tumors around cardia [J]. The Journal of Practical Medicine, 2024, 40(18): 2555-2560. |
[14] | Zhaochen SUN,Junyan JIANG,Yitian. CHEN. Advancements in CAR⁃T cell research for the treatment of colorectal cancer [J]. The Journal of Practical Medicine, 2024, 40(18): 2640-2646. |
[15] | Kengjun LUO,Wenbo ZHANG,Pengcheng. JIANG. Research advance on long non⁃coding RNA regulating myeloid⁃derived suppressor cells in tumors [J]. The Journal of Practical Medicine, 2024, 40(18): 2647-2653. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||