The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (2): 288-293.doi: 10.3969/j.issn.1006-5725.2025.02.020
• Reviews • Previous Articles
Qiang FU1,2,Zhongqi LU2,3,Ying CHANG1,2,Tiefeng JIN2,Meihua. ZHANG1,2()
Received:
2024-06-17
Online:
2025-01-25
Published:
2025-01-26
Contact:
Meihua. ZHANG
E-mail:zhangmeihua@ybu.edu.cn
CLC Number:
Qiang FU,Zhongqi LU,Ying CHANG,Tiefeng JIN,Meihua. ZHANG. Research progress on the antitumor effects of immune checkpoint inhibitors[J]. The Journal of Practical Medicine, 2025, 41(2): 288-293.
1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi:10.3322/caac.21660
doi: 10.3322/caac.21660 |
2 |
HE Y, HUANG Q, GE Y, et al. The role of circular RNA in tumor microenvironment and immunotherapy [J]. Int J Biol Macromol, 2023, 242(Pt 4): 124929. doi:10.1016/j.ijbiomac.2023.124929
doi: 10.1016/j.ijbiomac.2023.124929 |
3 |
TANG L, WEI F, WU Y, et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods [J]. J Exp Clin Cancer Res, 2018, 37(1): 87. doi:10.1186/s13046-018-0758-7
doi: 10.1186/s13046-018-0758-7 |
4 |
KRALL J A, REINHARDT F, MERCURY O A, et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy [J]. Sci Transl Med, 2018, 10(436):489. doi:10.1126/scitranslmed.aan3464
doi: 10.1126/scitranslmed.aan3464 |
5 |
HANAHAN D. Hallmarks of Cancer: New Dimensions [J]. Cancer Discov, 2022, 12(1): 31-46. doi:10.1158/2159-8290.cd-21-1059
doi: 10.1158/2159-8290.cd-21-1059 |
6 |
BALDANZI G. Immune Checkpoint Receptors Signaling in T Cells [J]. Int J Mol Sci, 2022, 23(7):3529. doi:10.3390/ijms23073529
doi: 10.3390/ijms23073529 |
7 | 刘小伟, 宋金恩, 刘馨雨,等. 阻断循环肿瘤细胞免疫检查点HLA-E:CD94-NKG2A抑制肿瘤转移[J]. 科学通报, 2023, 68(15): 1864-1866. |
8 |
EGGERMONT A M M, CHIARION-SILENI V, GROB J J, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): A randomised, double-blind, phase 3 trial [J]. Lancet Oncol, 2015, 16(5): 522-530. doi:10.1016/s1470-2045(15)70122-1
doi: 10.1016/s1470-2045(15)70122-1 |
9 |
HODI F S, CHIARION-SILENI V, GONZALEZ R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial [J]. Lancet Oncol, 2018, 19(11): 1480-1492. doi:10.1016/s1470-2045(18)30700-9
doi: 10.1016/s1470-2045(18)30700-9 |
10 |
MOTZER R J, TANNIR N M, MCDERMOTT D F, et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma [J]. N Engl J Med, 2018, 378(14): 1277-1290. doi:10.1056/nejmoa1712126
doi: 10.1056/nejmoa1712126 |
11 |
RECK M, SCHENKER M, LEE K H, et al. Nivolumab plus ipilimumab versus chemotherapy as first-line treatment in advanced non-small-cell lung cancer with high tumour mutational burden: Patient-reported outcomes results from the randomised, open-label, phase III CheckMate 227 trial [J]. Eur J Cancer, 2019, 116: 137-147. doi:10.1016/j.ejca.2019.05.008
doi: 10.1016/j.ejca.2019.05.008 |
12 | PAZ-ARES L G, RAMALINGAM S S, T-E CIULEANU, et al. First-Line Nivolumab Plus Ipilimumab in Advanced NSCLC: 4-Year Outcomes From the Randomized, Open-Label, Phase 3 CheckMate 227 Part 1 Trial [J]. J Thorac Oncol, 2022, 17(2): 289-308. |
13 |
PAZ-ARES L, CIULEANU T E, COBO M, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial [J]. Lancet Oncol, 2021, 22(2): 198-211. doi:10.1016/s1470-2045(20)30641-0
doi: 10.1016/s1470-2045(20)30641-0 |
14 |
YI M, ZHENG X, NIU M, et al. Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions [J]. Mol Cancer, 2022, 21(1): 28. doi:10.1186/s12943-021-01489-2
doi: 10.1186/s12943-021-01489-2 |
15 | 张文欣, 郭弘洁, 潘孝汇,等. 免疫检查点抑制剂的研究进展 [J]. 药学进展, 2022, 46(12): 910-921. |
16 |
TANG Q, CHEN Y, LI X, et al. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers [J]. Front Immunol, 2022, 13: 964442. doi:10.3389/fimmu.2022.964442
doi: 10.3389/fimmu.2022.964442 |
17 | 蒋丽媛, 卢晶, 崔志华,等. 阿帕替尼联合PD-1抑制剂治疗非小细胞肺癌一例 [J]. 海军医学杂志, 2021, 42(5): 604-606. |
18 |
GORDON S R, MAUTE R L, DULKEN B W, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity [J]. Nature, 2017, 545(7655): 495-499. doi:10.1038/nature22396
doi: 10.1038/nature22396 |
19 |
MORENO-VICENTE J, WILLOUGHBY J E, TAYLOR M C, et al. Fc-null anti-PD-1 monoclonal antibodies deliver optimal checkpoint blockade in diverse immune environments [J]. J Immunother Cancer, 2022, 10(1):e003735. doi:10.1136/jitc-2021-003735
doi: 10.1136/jitc-2021-003735 |
20 |
PERANZONI E, LEMOINE J, VIMEUX L, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment [J]. Proc Natl Acad Sci U S A, 2018, 115(17): E4041-E4050. doi:10.1073/pnas.1720948115
doi: 10.1073/pnas.1720948115 |
21 |
PAVELESCU L A, ENACHE R M, ROŞU O A, et al. Predictive Biomarkers and Resistance Mechanisms of Checkpoint Inhibitors in Malignant Solid Tumors[J]. Int J Mol Sci, 2024, 25(17):9659. doi:10.3390/ijms25179659
doi: 10.3390/ijms25179659 |
22 |
ROWSHANRAVAN B, HALLIDAY N, SANSOM D M. CTLA-4: A moving target in immunotherapy [J]. Blood, 2018, 131(1): 58-67. doi:10.1182/blood-2017-06-741033
doi: 10.1182/blood-2017-06-741033 |
23 |
KENNEDY A, WATERS E, ROWSHANRAVAN B, et al. Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation [J]. Nat Immunol, 2022, 23(9): 1365-1378. doi:10.1038/s41590-022-01289-w
doi: 10.1038/s41590-022-01289-w |
24 |
QURESHI O S, ZHENG Y, NAKAMURA K, et al. Trans-endocytosis of CD80 and CD86: A molecular basis for the cell-extrinsic function of CTLA-4 [J]. Science, 2011, 332(6029): 600-603. doi:10.1126/science.1202947
doi: 10.1126/science.1202947 |
25 |
ZHAO Y, LEE C K, LIN C H, et al. PD-L1:CD80 Cis-Heterodimer Triggers the Co-stimulatory Receptor CD28 While Repressing the Inhibitory PD-1 and CTLA-4 Pathways [J]. Immunity, 2019, 51(6):1059-1073. doi:10.1016/j.immuni.2019.11.003
doi: 10.1016/j.immuni.2019.11.003 |
26 | 肖晶晶, 黄美玲, 延常姣,等. Her-2阳性乳腺癌新辅助化疗联合靶向治疗获得病理完全缓解的影响因素[J]. 实用医学杂志. 2022, 38(5): 542-546. |
27 |
KORMAN A J, GARRETT-THOMSON S C, LONBERG N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial [J]. Nat Rev Drug Discov, 2022, 21(7): 509-528. doi:10.1038/s41573-021-00345-8
doi: 10.1038/s41573-021-00345-8 |
28 |
LLOVET J M, CASTET F, HEIKENWALDER M, et al. Immunotherapies for hepatocellular carcinoma [J]. Nat Rev Clin Oncol, 2022, 19(3): 151-172. doi:10.1038/s41571-021-00573-2
doi: 10.1038/s41571-021-00573-2 |
29 |
LINGEL H, BRUNNER-WEINZIERL M C. CTLA-4 (CD152): A versatile receptor for immune-based therapy [J]. Semin Immunol, 2019, 42: 101298. doi:10.1016/j.smim.2019.101298
doi: 10.1016/j.smim.2019.101298 |
30 |
JIANG D M, FYLES A, NGUYEN L T, et al. Phase I study of local radiation and tremelimumab in patients with inoperable locally recurrent or metastatic breast cancer [J]. Oncotarget, 2019, 10(31): 2947-2958. doi:10.18632/oncotarget.26893
doi: 10.18632/oncotarget.26893 |
31 |
CAI X, ZHAN H, YE Y, et al. Current Progress and Future Perspectives of Immune Checkpoint in Cancer and Infectious Diseases[J]. Front Genet, 2021, 12:785153. doi:10.3389/fgene.2021.785153
doi: 10.3389/fgene.2021.785153 |
32 |
MARUHASHI T, SUGIURA D, OKAZAKI I M, et al. LAG-3: From molecular functions to clinical applications [J]. J Immunother Cancer, 2020, 8(2):e001014. doi:10.1136/jitc-2020-001014
doi: 10.1136/jitc-2020-001014 |
33 |
MARUHASHI T, SUGIURA D, OKAZAKI I M, et al. Binding of LAG-3 to stable peptide-MHC class II limits T cell function and suppresses autoimmunity and anti-cancer immunity [J]. Immunity, 2022, 55(5):912-924. doi:10.1016/j.immuni.2022.03.013
doi: 10.1016/j.immuni.2022.03.013 |
34 |
WANG J, SANMAMED M F, DATAR I, et al. Fibrinogen-like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3 [J]. Cell, 2019, 176(1/2):334-347. doi:10.1016/j.cell.2018.11.010
doi: 10.1016/j.cell.2018.11.010 |
35 |
AMARIA R N, POSTOW M, BURTON E M, et al. Neoadjuvant relatlimab and nivolumab in resectable melanoma [J]. Nature, 2022, 611(7934): 155-160. doi:10.1038/s41586-022-05368-8
doi: 10.1038/s41586-022-05368-8 |
36 |
SAUER N, SZLASA W, JONDERKO L, et al. LAG-3 as a Potent Target for Novel Anticancer Therapies of a Wide Range of Tumors [J]. Int J Mol Sci, 2022, 23(17):9958. doi:10.3390/ijms23179958
doi: 10.3390/ijms23179958 |
37 |
ALBRECHT L J, LIVINGSTONE E, ZIMMER L, et al. The Latest Option: Nivolumab and Relatlimab in Advanced Melanoma [J]. Curr Oncol Rep, 2023, 25(6): 647-657. doi:10.1007/s11912-023-01406-4
doi: 10.1007/s11912-023-01406-4 |
38 |
ABDEL-RAHMAN S A, REHMAN A U, GABR M T. Discovery of First-in-Class Small Molecule Inhibitors of Lymphocyte Activation Gene 3 (LAG-3) [J]. ACS Med Chem Lett, 2023, 14(5): 629-635. doi:10.1021/acsmedchemlett.3c00054
doi: 10.1021/acsmedchemlett.3c00054 |
39 |
SCHÖFFSKI P, TAN D S W, MARTÍN M, et al. Phase I/II study of the LAG-3 inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies [J]. J Immunother Cancer, 2022, 10(2):e007736. doi:10.1136/jitc-2021-003776
doi: 10.1136/jitc-2021-003776 |
40 | 张红生, 米锦涛, 曹维维,等. 乳腺癌免疫检查点及其抑制剂的研究进展 [J]. 癌症进展, 2023, 21(5): 481-485,516. |
41 |
LIU R, ZHANG J, CHEN Y, et al. Safety, tolerability, and pharmacokinetics of HLX26 (an anti-LAG3 antibody) in patients with advanced or metastatic solid tumors or lymphomas [J]. 2023, 41(): e14671. doi:10.1200/jco.2023.41.16_suppl.e14671
doi: 10.1200/jco.2023.41.16_suppl.e14671 |
42 |
D'HAENS G, PEYRIN-BIROULET L, MARKS D J B, et al. A randomised, double-blind, placebo-controlled study of the LAG-3-depleting monoclonal antibody GSK2831781 in patients with active ulcerative colitis [J]. Aliment Pharmacol Ther, 2023, 58(3): 283-296. doi:10.1111/apt.17557
doi: 10.1111/apt.17557 |
43 |
GUO Q, ZHAO P, ZHANG Z, et al. TIM-3 blockade combined with bispecific antibody MT110 enhances the anti-tumor effect of γδ T cells [J]. Cancer Immunol Immunother, 2020, 69(12): 2571-2587. doi:10.1007/s00262-020-02638-0
doi: 10.1007/s00262-020-02638-0 |
44 |
STENGEL K F, HARDEN-BOWLES K, YU X, et al. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering [J]. Proc Natl Acad Sci U S A, 2012, 109(14): 5399-5404. doi:10.1073/pnas.1120606109
doi: 10.1073/pnas.1120606109 |
45 |
O'DONNELL J S, MADORE J, LI X Y, et al. Tumor intrinsic and extrinsic immune functions of CD155 [J]. Semin Cancer Biol, 2020, 65: 189-196. doi:10.1016/j.semcancer.2019.11.013
doi: 10.1016/j.semcancer.2019.11.013 |
46 |
DIXON K O, SCHORER M, NEVIN J, et al. Functional Anti-TIGIT Antibodies Regulate Development of Autoimmunity and Antitumor Immunity [J]. J Immunol, 2018, 200(8): 3000-3007. doi:10.4049/jimmunol.1700407
doi: 10.4049/jimmunol.1700407 |
47 |
CHO B C, ABREU D R, HUSSEIN M, et al. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): Primary and follow-up analyses of a randomised, double-blind, phase 2 study [J]. Lancet Oncol, 2022, 23(6): 781-792. doi:10.1016/s1470-2045(22)00226-1
doi: 10.1016/s1470-2045(22)00226-1 |
48 |
NIU J, MAURICE-DROR C, LEE D H, et al. First-in-human phase 1 study of the anti-TIGIT antibody vibostolimab as monotherapy or with pembrolizumab for advanced solid tumors, including non-small-cell lung cancer☆ [J]. Ann Oncol, 2022, 33(2): 169-180. doi:10.1016/j.annonc.2021.11.002
doi: 10.1016/j.annonc.2021.11.002 |
49 |
MAHONEY K M, FREEMAN G J. Acidity changes immunology: A new VISTA pathway [J]. Nat Immunol, 2020, 21(1): 13-16. doi:10.1038/s41590-019-0563-2
doi: 10.1038/s41590-019-0563-2 |
50 |
TAGLIAMENTO M, AGOSTINETTO E, BOREA R, et al. VISTA: A Promising Target for Cancer Immunotherapy?[J]. Immunotargets Ther, 2021, 10: 185-200. doi:10.2147/itt.s260429
doi: 10.2147/itt.s260429 |
51 |
HOSSEINKHANI N, DERAKHSHANI A, SHADBAD M A, et al. The Role of V-Domain Ig Suppressor of T Cell Activation (VISTA) in Cancer Therapy: Lessons Learned and the Road Ahead [J]. Front Immunol, 2021, 12: 676181. doi:10.3389/fimmu.2021.676181
doi: 10.3389/fimmu.2021.676181 |
52 |
KAKAVAND H, JACKETT L A, MENZIES A M, et al. Negative immune checkpoint regulation by VISTA: A mechanism of acquired resistance to anti-PD-1 therapy in metastatic melanoma patients [J]. Mod Pathol, 2017, 30(12): 1666-1676. doi:10.1038/modpathol.2017.89
doi: 10.1038/modpathol.2017.89 |
53 |
ZONG L, MO S, SUN Z, et al. Analysis of the immune checkpoint V-domain Ig-containing suppressor of T-cell activation (VISTA) in endometrial cancer [J]. Mod Pathol, 2022, 35(2): 266-273. doi:10.1038/s41379-021-00901-y
doi: 10.1038/s41379-021-00901-y |
54 |
IM E, SIM D Y, LEE H J, et al. Immune functions as a ligand or a receptor, cancer prognosis potential, clinical implication of VISTA in cancer immunotherapy [J]. Semin Cancer Biol, 2022, 86(Pt 2): 1066-1075. doi:10.1016/j.semcancer.2021.08.008
doi: 10.1016/j.semcancer.2021.08.008 |
55 |
LIU J, LIANG Y, YANG H, et al. Small-Molecule Radiotracers for Visualization of V-Domain Immunoglobulin Suppressor of T Cell Activation [J]. J Med Chem, 2024, 67(19): 17690-17700. doi:10.1021/acs.jmedchem.4c01690
doi: 10.1021/acs.jmedchem.4c01690 |
56 |
WANG J, WU G, MANICK B, et al. VSIG-3 as a ligand of VISTA inhibits human T-cell function [J]. Immunology, 2019, 156(1): 74-85. doi:10.1111/imm.13001
doi: 10.1111/imm.13001 |
[1] | Wei HE,Liping LIU,Jingwei ZHUO,Xiaodong ZHANG,Tong YANG,Jubin. FENG. CCR5 blockade reduces tumor growth by inducing apoptosis and impairing immunosuppression of tumor microenvironment [J]. The Journal of Practical Medicine, 2024, 40(9): 1204-1210. |
[2] | Yuxuan DING,Lining GUO,Jiayi SHEN,Lijun. WANG. Safety and efficacy of radiotherapy and PD⁃1/PD⁃L1 inhibitor + TKI for MSS/pMMR colorectal cancer with liver metastases [J]. The Journal of Practical Medicine, 2024, 40(9): 1293-1297. |
[3] | Xiaona MENG,Xu SUN,Huaimin LIU. Advances in the study of immune checkpoint inhibitors⁃related colitis [J]. The Journal of Practical Medicine, 2024, 40(9): 1314-1319. |
[4] | Xiya MA,Hu JI,Zehua ZHU,Bo PAN,Qiang XIE,Xiaobo. YAO. The predictive value of 18F⁃FDG PET/CT metabolic heterogeneity parameters combined with clinical features for the prognosis of esophageal squamous cell carcinoma before definitive radiochemotherapy [J]. The Journal of Practical Medicine, 2024, 40(7): 966-971. |
[5] | Ting XU,Wei HUANG,Li YANG,Hao. YU. Tumor endothelial markers1 mediate endothelial cell angiogenesis and heart failure myocardial remodeling via MAPKs pathway [J]. The Journal of Practical Medicine, 2024, 40(6): 780-786. |
[6] | Yaqi WANG,Wanfu LI,Maimaijiang AYIGUZALI,Kramer ANIWAR,Jiarong FAN,Peng LIANG,Samusiddin. NAFISA. Study on the effect of miR⁃20a⁃5p on human nephroblastoma cell WiT49 transplanted in nude mice [J]. The Journal of Practical Medicine, 2024, 40(4): 490-495. |
[7] | Yigang TAN,Haobin KUANG,Hongmei FU,Chunyan LI,Xiaobing ZHAO,Lijing XUE. Analysis of clinical characteristics of 33 cases of tuberculosis complicated by tumor necrosis factor⁃α inhibitor in autoimmune diseases [J]. The Journal of Practical Medicine, 2024, 40(3): 378-383. |
[8] | Jiang SHAO,Lin LI,Yansong GUO,Chengyuan SUN,Xichao WEN,Kebin ZHENG,Yanfang SHI. Research progress of CD73/NT5E in glioblastoma [J]. The Journal of Practical Medicine, 2024, 40(3): 428-431. |
[9] | Jianfang ZHANG,Xueqin SUN,Yeqian CUI,Yang CHEN,Shaobo. WANG. Effects of VEGF inhibitors for treating cholangiocarcinoma: A review of literature [J]. The Journal of Practical Medicine, 2024, 40(24): 3554-3560. |
[10] | Liping CHEN,Juyu LUO,Zhangyan PENG,Xiulan WU,Yuhong YANG,Lianyan SHI,Xiaoyun LI,Ling. WANG. Correlation between the ratio of tumor volume to uterine volume and the expression of Ki⁃67 and p16 protein in tissues with the pathological features and recurrence of endometrial carcinoma [J]. The Journal of Practical Medicine, 2024, 40(23): 3367-3372. |
[11] | Xiao XIAO,Fangyi LONG,Gang. WANG. Dual role and new strategies of pyroptosis in cancer therapy [J]. The Journal of Practical Medicine, 2024, 40(23): 3419-3426. |
[12] | Kunyuan HUANG,Kehua JIANG,Qing WANG. Research progress of S100A9 in renal diseases [J]. The Journal of Practical Medicine, 2024, 40(22): 3251-3255. |
[13] | Yuqiao ZHANG,Weijian MEI. Landmark Achievements in Treating Solid Tumors with Immune Checkpoint Inhibitors [J]. The Journal of Practical Medicine, 2024, 40(2): 272-277. |
[14] | Xing LI,Youcai WANG,Yongchao XU,Ligong TANG,Fangyuan. CHENG. Application of prophylactic ileostomy through right lower abdominal specimen extraction incision in laparoscopic rectal low anterior resection [J]. The Journal of Practical Medicine, 2024, 40(19): 2720-2725. |
[15] | Rui WANG,Duo LI,Zhao PENG,Lijun CUI,Xiang ZHANG,Kaili FAN,Wenyan. WU. Effect of endoscopic tumor resection by submucosal tunnel on recurrence in patients with submucosal tumors around cardia [J]. The Journal of Practical Medicine, 2024, 40(18): 2555-2560. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||