The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (3): 330-338.doi: 10.3969/j.issn.1006-5725.2025.03.004
• Basic Research • Previous Articles
Lu ZHENG1,Haohao ZHANG2,Feifei WU1,Jiaqi GUO1,Youqin WANG1,Ruimin HAO1,Lihui FENG1,Yan. LI1()
Received:
2024-10-06
Online:
2025-02-10
Published:
2025-02-19
Contact:
Yan. LI
E-mail:liyanweiwei@126.com
CLC Number:
Lu ZHENG,Haohao ZHANG,Feifei WU,Jiaqi GUO,Youqin WANG,Ruimin HAO,Lihui FENG,Yan. LI. Protective effect of exenatide on oxidative stress in hypothalamus of diabetes mice and its mechanism[J]. The Journal of Practical Medicine, 2025, 41(3): 330-338.
Tab.1
Comparison of body weight and glycolipid metabolism indexes in each group"
组别 | 体质量/g | FBG/(mmol/L) | TC/(mmol/L) | TG/(mmol/L) | FFA/(mmol/L) | Ins/(mIU/L) | HOMA-IR |
---|---|---|---|---|---|---|---|
NC组 | 30.35 ± 3.34 | 5.70 ± 0.93 | 2.36 ± 0.72 | 0.50 ± 1.17 | 0.41 ± 0.12 | 2.51 ± 0.12 | 0.64 ± 0.13 |
T2DM组 | 35.32 ± 2.65? | 14.15 ± 2.24? | 4.99 ± 0.39? | 1.73 ± 0.24? | 0.83 ± 0.08? | 5.56 ± 0.45? | 3.52 ± 0.78? |
T2DM+Exe组 | 31.45 ± 2.00# | 9.50 ± 0.85?# | 3.97 ± 0.28?# | 0.88 ± 0.10?# | 0.34 ± 0.14# | 2.65 ± 0.13# | 1.12 ± 0.10?# |
F值 | 10.33 | 32.45 | 34.99 | 61.67 | 25.93 | 153.34 | 44.83 |
P值 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
Tab.2
Inflammatory and adipokine factors in each group"
组别 | IL-4/ (pg/mL) | TNF-α/ (pg/mL) | LEP/ (pg/mL) | Visfitin/ (ng/mL) |
---|---|---|---|---|
NC组 | 185.74 ± 7.75 | 1.04 ± 0.79 | 0.76 ± 0.08 | 17.75 ± 0.72 |
T2DM组 | 102.13 ± 16.29? | 17.71 ± 2.38? | 6.06 ± 0.24? | 28.98 ± 1.09? |
T2DM+Exe组 | 169.04 ± 3.44?# | 2.25 ± 1.02# | 0.96 ± 0.12# | 19.66 ± 0.79*# |
F值 | 87.014 | 176.09 | 1764.931 | 233.229 |
P值 | < 0.05 | < 0.05 | < 0.05 | < 0.05 |
Tab.6
The activity of antioxidant enzymes and lipid deposition in each group after transfection"
组别 | ROS/ (MFI) | MDA/ (nmol/mgprot) | SOD/ (U/104cell) |
---|---|---|---|
CON组 | 1.00 ± 0.05 | 9.64 ± 1.41 | 0.0118 ± 0.001 |
PA+sh-NC组 | 1.54 ± 0.13? | 17.24 ± 1.01? | 0.0079 ± 0.0006? |
PA+Exe+sh-NC组 | 1.03 ± 0.06# | 10.26 ± 1.21# | 0.010 ± 0.0007?# |
PA+Exe+MC4RshRNA组 | 1.33 ± 0.15?& | 13.46 ± 0.72?& | 0.009 ± 0.0007? |
F值 | 29.264 | 48.683 | 12.147 |
P值 | < 0.05 | < 0.05 | < 0.05 |
1 | NCD Risk Factor Collaboration (NCD-RisC).Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: A pooled analysis of 1108 population-representative studies with 141 million participants [J]. Lancet, 2024, 404(10467): 2077-2093. |
2 |
PANG D, YANG C, LUO Q, et al. Soy isoflavones improve the oxidative stress induced hypothalamic inflammation and apoptosis in high fat diet-induced obese male mice through PGC1-alpha pathway [J]. Aging (Albany NY), 2020, 12(9): 8710-8727. doi:10.18632/aging.103197
doi: 10.18632/aging.103197 |
3 |
JO D, YOON G, SONG J. Role of Exendin-4 in Brain Insulin Resistance, Mitochondrial Function, and Neurite Outgrowth in Neurons under Palmitic Acid-Induced Oxidative Stress [J]. Antioxidants (Basel), 2021, 10(1):78. doi:10.3390/antiox10010078
doi: 10.3390/antiox10010078 |
4 |
MALONE J I, HANSEN B C. Does obesity cause type 2 diabetes mellitus (T2DM)?Or is it the opposite? [J]. Pediatr Diabetes, 2019, 20(1): 5-9. doi:10.1111/pedi.12787
doi: 10.1111/pedi.12787 |
5 | 马刚,孙家忠. GLP-1 RAs联合恩格列净对2型糖尿病患者的治疗效果及对胰岛素抵抗的影响[J]. 实用医学杂志,2020,36(18):2500-2504. |
6 |
DE SOUZA CORDEIRO L M, ELSHEIKH A, DEVISETTY N, et al. Hypothalamic MC4R regulates glucose homeostasis through adrenaline-mediated control of glucose reabsorption via renal GLUT2 in mice [J]. Diabetologia, 2021, 64(1): 181-194. doi:10.1007/s00125-020-05289-z
doi: 10.1007/s00125-020-05289-z |
7 |
POLENI P E, AKIEDA-ASAI S, KODA S, et al. Possible involvement of melanocortin-4-receptor and AMP-activated protein kinase in the interaction of glucagon-like peptide-1 and leptin on feeding in rats [J]. Biochem Biophys Res Commun, 2012, 420(1): 36-41. doi:10.1016/j.bbrc.2012.02.109
doi: 10.1016/j.bbrc.2012.02.109 |
8 |
TANAKA T, MASUZAKI H, YASUE S, et al. Central melanocortin signaling restores skeletal muscle AMP-activated protein kinase phosphorylation in mice fed a high-fat diet [J]. Cell Metab, 2007, 5(5): 395-402. doi:10.1016/j.cmet.2007.04.004
doi: 10.1016/j.cmet.2007.04.004 |
9 |
GOKUL P R, APPERLEY L, PARKINSON J, et al. Semaglutide, A Long-Acting GLP-1 Analogue, for the management of early onset obesity due to MC4R defect-A case report [J]. Horm Res Paediatr, 2024. doi: 10.1159/000537921 .
doi: 10.1159/000537921 |
10 |
LAMBADIARI V, PAVLIDIS G, KOUSATHANA F, et al. Effects of 6-month treatment with the glucagon like peptide-1 analogue liraglutide on arterial stiffness, left ventricular myocardial deformation and oxidative stress in subjects with newly diagnosed type 2 diabetes [J]. Cardiovasc Diabetol, 2018, 17(1): 8. doi:10.1186/s12933-017-0646-z
doi: 10.1186/s12933-017-0646-z |
11 |
YAGISHITA Y, URUNO A, FUKUTOMI T, et al. Nrf2 Improves Leptin and Insulin Resistance Provoked by Hypothalamic Oxidative Stress [J]. Cell Rep, 2017, 18(8): 2030-2044. doi:10.1016/j.celrep.2017.01.064
doi: 10.1016/j.celrep.2017.01.064 |
12 |
LIN M H, CHENG P C, HSIAO P J, et al. The GLP-1 receptor agonist exenatide ameliorates neuroinflammation, locomotor activity, and anxiety-like behavior in mice with diet-induced obesity through the modulation of microglial M2 polarization and downregulation of SR-A4 [J]. Int Immunopharmacol, 2023, 115: 109653. doi:10.1016/j.intimp.2022.109653
doi: 10.1016/j.intimp.2022.109653 |
13 |
STENLID R, CERENIUS S Y, WEN Q, et al. Adolescents with obesity treated with exenatide maintain endogenous GLP-1, reduce DPP-4, and improve glycemic control [J]. Front Endocrinol (Lausanne), 2023, 14: 1293093. doi:10.3389/fendo.2023.1293093
doi: 10.3389/fendo.2023.1293093 |
14 |
BAI C, WANG Y, NIU Z, et al. Exenatide improves hepatocyte insulin resistance induced by different regional adipose tissue[J]. Front Endocrinol (Lausanne), 2022, 13: 1012904. doi:10.3389/fendo.2022.1012904
doi: 10.3389/fendo.2022.1012904 |
15 |
XU Q, ZHANG X, LI T, et al. Exenatide regulates Th17/Treg balance via PI3K/Akt/FoxO1 pathway in db/db mice [J]. Mol Med, 2022, 28(1): 144. doi:10.1186/s10020-022-00574-6
doi: 10.1186/s10020-022-00574-6 |
16 |
XU F, CAO H, CHEN Z, et al. Short-term GLP-1 receptor agonist exenatide ameliorates intramyocellular lipid deposition without weight loss in ob/ob mice [J]. Int J Obes (Lond), 2020, 44(4): 937-947. doi:10.1038/s41366-019-0513-y
doi: 10.1038/s41366-019-0513-y |
17 |
ADRIAENSSENS A E, BIGGS E K, DARWISH T, et al. Glucose-Dependent Insulinotropic Polypeptide Receptor-Expressing Cells in the Hypothalamus Regulate Food Intake [J]. Cell Metab, 2019, 30(5):987-996.e6. doi:10.1016/j.cmet.2019.07.013
doi: 10.1016/j.cmet.2019.07.013 |
18 |
HUANG Z, LIU L, ZHANG J, et al. Glucose-sensing glucagon-like peptide-1 receptor neurons in the dorsomedial hypothalamus regulate glucose metabolism [J]. Sci Adv, 2022, 8(23): eabn5345. doi:10.1126/sciadv.abn5345
doi: 10.1126/sciadv.abn5345 |
19 |
HAVEL P J, HAHN T M, SINDELAR D K, et al. Effects of streptozotocin-induced diabetes and insulin treatment on the hypothalamic melanocortin system and muscle uncoupling protein 3 expression in rats [J]. Diabetes, 2000, 49(2): 244-252. doi:10.2337/diabetes.49.2.244
doi: 10.2337/diabetes.49.2.244 |
20 |
DONG Y, CARTY J, GOLDSTEIN N, et al. Time and metabolic state-dependent effects of GLP-1R agonists on NPY/AgRP and POMC neuronal activity in vivo [J]. Mol Metab, 2021, 54: 101352. doi:10.1016/j.molmet.2021.101352
doi: 10.1016/j.molmet.2021.101352 |
21 |
SPEZANI R, MARINHO T S, REIS T S, et al. Cotadutide (GLP-1/Glucagon dual receptor agonist) modulates hypothalamic orexigenic and anorexigenic neuropeptides in obese mice [J]. Peptides, 2024, 173: 171138. doi:10.1016/j.peptides.2023.171138
doi: 10.1016/j.peptides.2023.171138 |
22 |
GONZÁLEZ P, LOZANO P, ROS G, et al. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections [J]. Int J Mol Sci, 2023, 24(11):9352. doi:10.3390/ijms24119352
doi: 10.3390/ijms24119352 |
23 |
XIA B, DING J, LI Q, et al. Loganin protects against myocardial ischemia-reperfusion injury by modulating oxidative stress and cellular apoptosis via activation of JAK2/STAT3 signaling [J]. Int J Cardiol, 2024, 395: 131426. doi:10.1016/j.ijcard.2023.131426
doi: 10.1016/j.ijcard.2023.131426 |
24 |
PANDEY S, MANGMOOL S, MADREITER-SOKOLOWSKI C T, et al. Exendin-4 protects against high glucose-induced mitochondrial dysfunction and oxidative stress in SH-SY5Y neuroblastoma cells through GLP-1 receptor/Epac/Akt signaling [J]. Eur J Pharmacol, 2023, 954: 175896. doi:10.1016/j.ejphar.2023.175896
doi: 10.1016/j.ejphar.2023.175896 |
25 |
WANG Y, FANG N, WANG Y, et al. Activating MC4R Promotes Functional Recovery by Repressing Oxidative Stress-Mediated AIM2 Activation Post-spinal Cord Injury [J]. Mol Neurobiol, 2024, 61(8):6101-6118. doi:10.1007/s12035-024-03936-9
doi: 10.1007/s12035-024-03936-9 |
26 |
ZHANG H H, LIU J, QIN G J, et al. Melanocortin 4 Receptor Activation Attenuates Mitochondrial Dysfunction in Skeletal Muscle of Diabetic Rats [J]. J Cell Biochem, 2017, 118(11): 4072-4079. doi:10.1002/jcb.26062
doi: 10.1002/jcb.26062 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||