1 |
RAMIREZ M F, GAN T J. Total intravenous anesthesia versus inhalation anesthesia: how do outcomes compare?[J]. Curr Opin Anaesthesiol, 2023, 36(4):399-406. doi:10.1097/aco.0000000000001274
doi: 10.1097/aco.0000000000001274
|
2 |
YANG H, ZHAO L, LI Q. Echinacoside alleviates sevoflurane-induced cognitive dysfunction by activating FOXO1-mediated autophagy[J]. Int J Dev Neurosci, 2022, 82(4):339-348. doi:10.1002/jdn.10183
doi: 10.1002/jdn.10183
|
3 |
GUO Y, CHEN Q, WU B, et al. Isovitexin restores sevoflurane‑induced cognitive dysfunction by mediating autophagy through activation of the PGC‑1α/FNDC5 signaling pathway[J]. Acta Neurobiol Exp (Wars), 2022, 82(3):373-379. doi:10.55782/ane-2022-035
doi: 10.55782/ane-2022-035
|
4 |
YIN C, ZHANG Q, ZHAO J, et al. Necrostatin-1 Against Sevoflurane-Induced Cognitive Dysfunction Involves Activation of BDNF/TrkB Pathway and Inhibition of Necroptosis in Aged Rats[J]. Neurochem Res, 2022, 47(4):1060-1072. doi:10.1007/s11064-021-03505-9
doi: 10.1007/s11064-021-03505-9
|
5 |
ZHAO L, GONG H, HUANG H, et al. Participation of Mind Bomb-2 in Sevoflurane Anesthesia Induces Cognitive Impairment in Aged Mice via Modulating Ferroptosis[J]. ACS Chem Neurosci, 2021, 12(13):2399-2408. doi:10.1021/acschemneuro.1c00131
doi: 10.1021/acschemneuro.1c00131
|
6 |
WANG N, NIE H, ZHANG Y, et al. Dexmedetomidine exerts cerebral protective effects against cerebral ischemic injury by promoting the polarization of M2 microglia via the Nrf2/HO-1/NLRP3 pathway[J]. Inflamm Res, 2022, 71(1):93-106. doi:10.1007/s00011-021-01515-5
doi: 10.1007/s00011-021-01515-5
|
7 |
HE H, SUN M, CHEN Y, et al. Dexmedetomidine alleviates the hypoxic-ischemic brain damage via miR-20a-5p/methionine adenosyltransferase 2B axis in rat pups[J]. Neuroreport, 2022, 33(5):205-214. doi:10.1097/wnr.0000000000001750
doi: 10.1097/wnr.0000000000001750
|
8 |
BURLACU C C, NEAG M A, MITRE A O, et al. The Role of miRNAs in Dexmedetomidine's Neuroprotective Effects against Brain Disorders[J]. Int J Mol Sci, 2022, 23(10):5452. doi:10.3390/ijms23105452
doi: 10.3390/ijms23105452
|
9 |
陈爱鸾, 陈健. 右美托咪定对氯胺酮诱导的老龄大鼠神经毒性和认知功能损伤的影响[J]. 脑与神经疾病杂志, 2022, 30(6):336-341. doi:10.3969/j.issn.1006-351X.2022.6.nysjjbzz202206002
doi: 10.3969/j.issn.1006-351X.2022.6.nysjjbzz202206002
|
10 |
LI Q, ZHANG X, LI S, et al. Carnosol alleviates sevoflurane-induced cognitive dysfunction by mediating NF-κB pathway in aged rats[J]. Drug Dev Res, 2022, 83(6):1342-1350. doi:10.1002/ddr.21963
doi: 10.1002/ddr.21963
|
11 |
李航, 张士霞, 张玮琪, 等. 右美托咪定对大鼠肝脏缺血再灌注损伤(HIRI)内质网应激的影响[J]. 中国兽医学报, 2022,42(6):1213-1219
|
12 |
GE X, ZUO Y, XIE J, et al. A new mechanism of POCD caused by sevoflurane in mice: cognitive impairment induced by cross-dysfunction of iron and glucose metabolism[J]. Aging (Albany NY), 2021, 13(18):22375-22389. doi:10.18632/aging.203544
doi: 10.18632/aging.203544
|
13 |
SUN M, XIE Z, ZHANG J, et al. Mechanistic insight into sevoflurane-associated developmental neurotoxicity[J]. Cell Biol Toxicol, 2022, 38(6):927-943. doi:10.1007/s10565-021-09677-y
doi: 10.1007/s10565-021-09677-y
|
14 |
LIANG F, LI M, XU M, et al. Sevoflurane anaesthesia induces cognitive impairment in young mice through sequential tau phosphorylation[J]. Br J Anaesth, 2023, 131(4):726-738. doi:10.1016/j.bja.2023.06.059
doi: 10.1016/j.bja.2023.06.059
|
15 |
PERIÑÁN M T, MACÍAS-GARCÍA D, JESÚS S, et al. Homocysteine levels, genetic background, and cognitive impairment in Parkinson's disease[J]. J Neurol, 2023, 270(1):477-485. doi:10.1007/s00415-022-11361-y
doi: 10.1007/s00415-022-11361-y
|
16 |
SANCHEZ-SANCHEZ J L, GIUDICI K V, GUYONNET S, et al. Plasma MCP-1 and changes on cognitive function in community-dwelling older adults[J]. Alzheimers Res Ther, 2022, 14(1):5.
|
17 |
SUN M, DONG Y, LI M, et al. Dexmedetomidine and Clonidine Attenuate Sevoflurane-Induced Tau Phosphorylation and Cognitive Impairment in Young Mice via α-2 Adrenergic Receptor[J]. Anesth Analg, 2021, 132(3):878-889. doi:10.1213/ane.0000000000005268
doi: 10.1213/ane.0000000000005268
|
18 |
ZHOU Q, XIE D, CHEN T, et al. The effects of dexmedetomidine on the cognitive function of mild cognitive impairment (MCI) rats[J]. Ann Transl Med, 2022, 10(12):667. doi:10.21037/atm-22-2043
doi: 10.21037/atm-22-2043
|
19 |
廖壮文,梁采宇,陈灿伟,等.白鲜碱通过Wnt/β-catenin信号通路抑制前列腺癌骨转移PC-3细胞的作用[J].实用医学杂志, 2021, 37(3):298-303. doi:10.3969/j.issn.1006-5725.2021.03.005
doi: 10.3969/j.issn.1006-5725.2021.03.005
|
20 |
WANG Q, HUANG X, SU Y, et al. Activation of Wnt/β-catenin pathway mitigates blood-brain barrier dysfunction in Alzheimer's disease[J]. Brain, 2022, 145(12):4474-4488. doi:10.1093/brain/awac236
doi: 10.1093/brain/awac236
|