1 |
YANAI H, ADACHI H, HAKOSHIMA M, et al. Molecular Biological and Clinical Understanding of the Pathophysiology and Treatments of Hyperuricemia and Its Association with Metabolic Syndrome, Cardiovascular Diseases and Chronic Kidney Disease[J]. Int J Mol Sci, 2021, 22(17):9221. doi:10.3390/ijms22179221
doi: 10.3390/ijms22179221
|
2 |
ZHANG M, CUI R, ZHOU Y, et al. Accumulation of Renal Fibrosis in Hyperuricemia Rats Is Attributed to the Recruitment of Mast Cells, Activation of the TGF-β1/Smad2/3 Pathway, and Aggravation of Oxidative Stress[J]. Int J Mol Sci, 2023, 24(13):10839. doi:10.3390/ijms241310839
doi: 10.3390/ijms241310839
|
3 |
WANG J, CHEN Y, ZHONG H, et al. The gut microbiota as a target to control hyperuricemia pathogenesis: Potential mechanisms and therapeutic strategies[J]. Crit Rev Food Sci Nutr, 2022,62(14):3979-3989. doi:10.1080/10408398.2021.1874287
doi: 10.1080/10408398.2021.1874287
|
4 |
SU H Y, YANG C, LIANG D, et al. Research Advances in the Mechanisms of Hyperuricemia-Induced Renal Injury[J]. Biomed Res Int, 2020, 2020:5817348. doi:10.1155/2020/5817348
doi: 10.1155/2020/5817348
|
5 |
LI H, LIU X, LEE M H, et al. Vitamin C alleviates hyperuricemia nephropathy by reducing inflammation and fibrosis[J]. J Food Sci, 2021, 86(7):3265-3276. doi:10.1111/1750-3841.15803
doi: 10.1111/1750-3841.15803
|
6 |
YANG H T, XIU W J, LIU J K, et al. Gut Microbiota Characterization in Patients with Asymptomatic Hyperuricemia: probiotics increased[J]. Bioengineered,2021,12(1):7263-7275. doi:10.1080/21655979.2021.1976897
doi: 10.1080/21655979.2021.1976897
|
7 |
LI F, WANG M, WANG J, et al. Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease[J]. Front Cell Infect Microbiol, 2019,9:206. doi:10.3389/fcimb.2019.00206
doi: 10.3389/fcimb.2019.00206
|
8 |
CRISTOBAL-GARCIA M, GARCIA-ARROYO F E, TAPIA E, et al. Renal oxi dative stress induced by long-term hyperuricemia alters mitochon drial function and maintains systemic hypertension[J]. Oxid Med Cell Longev, 2015,2015:535686. doi:10.1155/2015/535686
doi: 10.1155/2015/535686
|
9 |
高尿酸血症相关疾病诊疗多学科共识专家组. 中国高尿酸血症相关疾病诊疗多学科专家共识[J]. 中华内科杂志, 2017,56(3):235-248. doi:10.3760/cma.j.issn.0578-1426.2017.03.021
doi: 10.3760/cma.j.issn.0578-1426.2017.03.021
|
10 |
PAN J, SHI M, MA L, et al. Mechanistic insights of soluble uric acid-related kidney disease[J]. Curr Med Chem, 2020, 27(30): 5056-5066. doi:10.2174/0929867326666181211094421
doi: 10.2174/0929867326666181211094421
|
11 |
XIONG C, DENG J, WANG X, et al. Pharmacologic targeting of BET proteins attenuates hyperuricemic nephropathy in rats[J]. Front Pharm, 2021, 12: 636154. doi:10.3389/fphar.2021.636154
doi: 10.3389/fphar.2021.636154
|
12 |
ZENNARO C, TONON F, ZARATTINI P, et al. The renal phenotype of allopurinol-treated HPRT-deficient mouse[J]. PLoS One, 2017, 12(3): e0173512. doi:10.1371/journal.pone.0173512
doi: 10.1371/journal.pone.0173512
|
13 |
ZHANG D, HUANG Q F, LI Y, et al. Incident hyperuricemia in relation to antihypertensive therapy with the irbesartan/hydrochlorothiazide combination[J]. Blood Press Monit, 2021,26(6):413-418. doi:10.1097/mbp.0000000000000554
doi: 10.1097/mbp.0000000000000554
|
14 |
SUN Z R, LIU H R, HU D, et al. Ellagic Acid Exerts Beneficial Effects on Hyperuricemia by Inhibiting Xanthine Oxidase and NLRP3 Inflammasome Activation[J]. J Agric Food Chem, 2021,69(43):12741-12752. doi:10.1021/acs.jafc.1c05239
doi: 10.1021/acs.jafc.1c05239
|
15 |
CHEN F, YUAN L, XU T, et al. Association of Hyperuricemia with 10-Year Atherosclerotic Cardiovascular Disease Risk among Chinese Adults and Elders[J]. Int J Environ Res Public Health, 2022, 19: 6713. doi:10.3390/ijerph19116713
doi: 10.3390/ijerph19116713
|
16 |
LONG T, LIU L. Research Progress on the Relationship between Dietary Patterns and Hyperuricemia [J]. Appl Bionics Biomech, 2022, 2022: 1263-1270. doi:10.1155/2022/5658423
doi: 10.1155/2022/5658423
|
18 |
伍成凯, 廖生武, 方浩庭, 等. 广州市成年人高尿酸血症患病情况调查及其影响因素分析[J]. 实用医学杂志, 2021, 37(23): 3072-3076. doi:10.3969/j.issn.1006-5725.2021.23.022
doi: 10.3969/j.issn.1006-5725.2021.23.022
|
19 |
LIU P, MA G, WANG Y, et al. Therapeutic effects of traditional Chinese medicine on gouty nephropathy: Based on NF-κB signaling pathways[J]. Biomed Pharmacother, 2023, 158:114199. doi:10.1016/j.biopha.2022.114199
doi: 10.1016/j.biopha.2022.114199
|
20 |
MIRONOVA O I. Hyperuricemia and kidney damage in patients with cardiovascular disease: A review[J]. Ter Arkh, 2023, 4(12):1426-1430. doi:10.26442/00403660.2022.12.201999
doi: 10.26442/00403660.2022.12.201999
|
21 |
陈如萍, 刘蕊, 孙遨, 等. 基于社区老年健康体检人群的慢性肾脏病流行病学调查[J]. 实用医学杂志, 2021, 37(13): 1755-1760.
|
22 |
YU C S H, FANG H H, YU Z P, et al. Overview of advances in Chinese medicine for the treatment of gouty nephropathy[J], J Emerg Tradit Chin Med, 2020, 29: 4.
|
23 |
郭文燕,李燕林. 尿毒康合剂联合非布司他治疗湿热瘀阻型痛风性肾病疗效评价[J]. 广州中医药大学学报, 2021,38(7):1335-1340.
|