1 |
SINKE M R T, OTTE W M, MEERWALDT A E, et al. Imaging Markers for the Characterization of Gray and White Matter Changes from Acute to Chronic Stages after Experimental Traumatic Brain Injury[J]. Neurotrauma, 2021,38(12):1642-1653 . doi:10.1089/neu.2020.7151
doi: 10.1089/neu.2020.7151
|
2 |
LU L, LI F, CHEN H, et al. Functional connectivity dysfunction of insular subdivisions in cognitive impairment after acute mild traumatic brain injury[J]. Brain Imaging Behav, 2020,14(3):941-948. doi:10.1007/s11682-020-00288-5
doi: 10.1007/s11682-020-00288-5
|
3 |
曾哲,罗琳,陈强. 静息态功能磁共振成像在轻度创伤性脑损伤研究中的应用[J]. 磁共振成像, 2023,14(10):167-170. doi:10.12015/issn.1674-8034.2023.10.030
doi: 10.12015/issn.1674-8034.2023.10.030
|
4 |
MORELLI N, JOHNSON N F, KAISER K, et al. Resting state functional connectivity responses post-mild traumatic brain injury: a systematic review [J]. Brain Inj, 2021,35(11):1326-1337. doi:10.1080/02699052.2021.1972339
doi: 10.1080/02699052.2021.1972339
|
5 |
SHI J, TENG J, DU X, et al. Multi-Modal Analysis of Resting-State fMRI Data in mTBI Patients and Association With Neuropsychological Outcomes[J]. Front Neurol, 2021,12:639760. doi:10.3389/fneur.2021.639760
doi: 10.3389/fneur.2021.639760
|
6 |
SHETH C, ROGOWSKA J, LEGARRETA M, et al. Functional connectivity of the anterior cingulate cortex in Veterans with mild traumatic brain injury[J]. Behav Brain Res, 2021,396:112882. doi:10.1016/j.bbr.2020.112882
doi: 10.1016/j.bbr.2020.112882
|
7 |
SULLIVAN K A, BLAINE H, KAYE S A, et al. A Systematic Review of Psychological Interventions for Sleep and Fatigue after Mild Traumatic Brain Injury[J]. Neurotrauma, 2018,35(2):195-209. doi:10.1089/neu.2016.4958
doi: 10.1089/neu.2016.4958
|
8 |
ROSENTHAL S, GRAY M, FATIMA H,et al. Functional MR Imaging: Blood Oxygen Level-Dependent and Resting State Techniques in Mild Traumatic Brain Injury[J]. Neuroimaging Clin N Am, 2018,28(1):107-115. doi:10.1016/j.nic.2017.09.008
doi: 10.1016/j.nic.2017.09.008
|
9 |
LI F, LIU Y, LU L, et al. Rich-club reorganization of functional brain networks in acute mild traumatic brain injury with cognitive impairment[J]. Quant Imaging Med Surg, 2022,12(7):3932-3946. doi:10.21037/qims-21-915
doi: 10.21037/qims-21-915
|
10 |
BOSAK N, BRANCO P, KUPERMAN P, et al. Brain Connectivity Predicts Chronic Pain in Acute Mild Traumatic Brain Injury[J]. Ann Neurol, 2022,92(5):819-833. doi:10.1002/ana.26463
doi: 10.1002/ana.26463
|
11 |
曾哲,罗琳,陈强,等. 急性轻度创伤性脑损伤患者静息态功能MRI多模式研究[J]. 磁共振成像,2024,15(3):43-49. doi:10.12015/issn.1674-8034.2024.03.008
doi: 10.12015/issn.1674-8034.2024.03.008
|
12 |
LU L, ZHANG J, LI F, et al. Aberrant Static and Dynamic Functional Network Connectivity in Acute Mild Traumatic Brain Injury with Cognitive Impairment[J]. Clin Neuroradiol, 2022,32(1):205-214. doi:10.1007/s00062-021-01082-6
doi: 10.1007/s00062-021-01082-6
|
13 |
LU L, LI F, MA Y, et al. Functional connectivity disruption of the substantia nigra associated with cognitive impairment in acute mild traumatic brain injury[J]. Eur J Radiol, 2019,114:69-75. doi:10.1016/j.ejrad.2019.03.002
doi: 10.1016/j.ejrad.2019.03.002
|
14 |
AMIR J, NAIR J K R, DEL CARPIO-O'DONOVAN R, et al. Atypical resting state functional connectivity in mild traumatic brain injury[J]. Brain Behav, 2021,11(8):e2261. doi:10.1002/brb3.2261
doi: 10.1002/brb3.2261
|
15 |
李逢芳,路丽彦,胡蓝月,等. 急性期轻度创伤性脑损伤患者的静息态自发脑活动及功能连接异常[J]. 临床放射学杂志,2020,39(9):1699-1703.
|
16 |
HE F, LI Y, LI C, et al. Repeated anodal high-definition transcranial direct current stimulation over the left dorsolateral prefrontal cortex in mild cognitive impairment patients increased regional homogeneity in multiple brain regions[J]. PLoS One,2021,16(8):e0256100. doi:10.1371/journal.pone.0256100
doi: 10.1371/journal.pone.0256100
|
17 |
SHAFI R, CRAWLEY A P, TARTAGLIA M C, et al. Sex-specific differences in resting-state functional connectivity of large-scale networks in postconcussion syndrome[J]. Sci Rep,2020,10(1):21982. doi:10.1038/s41598-020-77137-4
doi: 10.1038/s41598-020-77137-4
|
18 |
CHURCHILL N W, HUTCHISON M G, GRAHAM S J, et al. Concussion Risk and Resilience: Relationships with Pre-Injury Salience Network Connectivity[J]. J Neurotrauma, 2021,38(22):3097-3106. doi:10.1089/neu.2021.0123
doi: 10.1089/neu.2021.0123
|
19 |
BERNIER R A, ROY A, VENKATESAN U M, et al. Corrigendum: Dedifferentiation Does Not Account for Hyperconnectivity after Traumatic Brain Injury[J]. Front Neurol, 2017,8:674. doi:10.3389/fneur.2017.00674
doi: 10.3389/fneur.2017.00674
|
20 |
WOODROW R E, WINZECK S, LUPPI A I, et al. Acute thalamic connectivity precedes chronic post-concussive symptoms in mild traumatic brain injury[J]. Brain, 2023,146(8):3484-3499.
|
21 |
VEDAEI F, NEWBERG A B, ALIZADEH M, et al. Resting-State Functional MRI Metrics in Patients With Chronic Mild Traumatic Brain Injury and Their Association With Clinical Cognitive Performance[J]. Front Hum Neurosci, 2021,15:768485. doi:10.3389/fnhum.2021.768485
doi: 10.3389/fnhum.2021.768485
|
22 |
LUO L, LANGLEY C, MORENO-LOPEZ L, et al. Depressive symptoms following traumatic brain injury are associated with resting-state functional connectivity[J]. Psychol Med, 2023,53(6):2698-2705. doi:10.1017/s0033291721004724
doi: 10.1017/s0033291721004724
|
23 |
ZHOU Y, LUI Y W, ZUO X N, et al. Characterization of thalamo-cortical association using amplitude and connectivity of functional MRI in mild traumatic brain injury[J]. J Magn Reson Imaging, 2014,39(6):1558-1568. doi:10.1002/jmri.24310
doi: 10.1002/jmri.24310
|