1 |
CHEN Y, LIN Y, SHU Y, et al. Interaction between N6-methyladenosine (m6A) modification and noncoding RNAs in cancer[J]. Mol Cancer, 2020, 19(1 ): 94. doi:10.1186/s12943-020-01207-4
doi: 10.1186/s12943-020-01207-4
|
2 |
DU H, ZHAO Y, HE J, et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4⁃NOT deadenylase complex[J]. Nat Commun, 2016, 7: 12626. doi:10.1038/ncomms12626
doi: 10.1038/ncomms12626
|
3 |
CHEN X, ZHOU X, WANG X. m6A binding protein YTHDF2 in cancer[J]. Exp Hematol Oncol, 2022, 11(1): 21. doi:10.1186/s40164-022-00269-y
doi: 10.1186/s40164-022-00269-y
|
4 |
CARDELLI M, MARCHEGIANI F, CAVALLONE L, et al. A Polymorphism of the YTHDF2 Gene (1p35) Located in an Alu-Rich Genomic Domain Is Associated With Human Longevity[J]. J Gerontol A Biol Sci Med Sci, 2006, 61(6): 547-556. doi:10.1093/gerona/61.6.547
doi: 10.1093/gerona/61.6.547
|
5 |
WANG J Y, LU A Q. The biological function of m6A reader YTHDF2 and its role in human disease[J]. Cancer Cell Int, 2021, 21: 109. doi:10.1186/s12935-021-01807-0
doi: 10.1186/s12935-021-01807-0
|
6 |
JIN D, GUO J, WU Y, et al. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC[J]. Mol Cancer, 2020, 19(1): 40. doi:10.1186/s12943-020-01161-1
doi: 10.1186/s12943-020-01161-1
|
7 |
EINSTEIN J M, PERELIS M, CHAIM I A, et al. Inhibition of YTHDF2 triggers proteotoxic cell death in MYC-driven breast cancer[J]. Mol Cell, 2021, 81(15): 3048-3064.e9. doi:10.1016/j.molcel.2021.06.014
doi: 10.1016/j.molcel.2021.06.014
|
8 |
LI J, XIE H, YING Y, et al. YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer[J]. Mol Cancer, 2020, 19(1): 152. doi:10.1186/s12943-020-01267-6
doi: 10.1186/s12943-020-01267-6
|
9 |
CHEN Z, SHAO Y L, WANG L L, et al. YTHDF2 is a potential target of AML1/ETO-HIF1α loop-mediated cell proliferation in t(8;21) AML[J]. Oncogene, 2021, 40(22): 3786-3798. doi:10.1038/s41388-021-01818-1
doi: 10.1038/s41388-021-01818-1
|
10 |
YAN J, HUANG X, ZHANG X, et al. LncRNA LINC00470 promotes the degradation of PTEN mRNA to facilitate malignant behavior in gastric cancer cells[J]. Biochem Biophys Res Commun, 2020, 521(4): 887-893. doi:10.1016/j.bbrc.2019.11.016
doi: 10.1016/j.bbrc.2019.11.016
|
11 |
YANG X, ZHANG S, HE C, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST[J]. Mol Cancer, 2020,19(1):46. doi:10.1186/s12943-020-1146-4
doi: 10.1186/s12943-020-1146-4
|
12 |
HOU J, ZHANG H, LIU J, et al. YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma[J]. Mol Cancer, 2019, 18(1): 163. doi:10.1186/s12943-019-1082-3
doi: 10.1186/s12943-019-1082-3
|
13 |
CHEN J, SUN Y, XU X, et al. YTH domain family 2 orchestrates epithelial-mesenchymal transition/proliferation dichotomy in pancreatic cancer cells[J]. Cell Cycle, 2017, 16(23): 2259-2271. doi:10.1080/15384101.2017.1380125
doi: 10.1080/15384101.2017.1380125
|
14 |
WANG X, ZHANG J, WANG Y. Long noncoding RNA GAS5-AS1 suppresses growth and metastasis of cervical cancer by increasing GAS5 stability[J]. Am J Transl Res, 2019, 11(8): 4909-4921.
|
15 |
DIXIT D, PRAGER B C, GIMPLE R C, et al. The RNA m6A Reader YTHDF2 Maintains Oncogene Expression and Is a Targetable Dependency in Glioblastoma Stem Cells[J]. Cancer Discov, 2021, 11(2): 480-499. doi:10.1158/2159-8290.cd-20-0331
doi: 10.1158/2159-8290.cd-20-0331
|
16 |
YU J, CHAI P, XIE M, et al. Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma[J]. Genome Biol, 2021, 22(1): 85. doi:10.1186/s13059-021-02308-z
doi: 10.1186/s13059-021-02308-z
|
17 |
WANG X, LU Z, GOMEZ A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481): 117-120. doi:10.1038/nature12730
doi: 10.1038/nature12730
|
18 |
ZHU T, ROUNDTREE I A, WANG P, et al. Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine[J]. Cell Res, 2014, 24(12): 1493-1496. doi:10.1038/cr.2014.152
doi: 10.1038/cr.2014.152
|
19 |
PARK O H, HA H, LEE Y, et al. Endoribonucleolytic Cleavage of m6A-Containing RNAs by RNase P/MRP Complex[J]. Mol Cell, 2019, 74(3): 494-507.e8. doi:10.1016/j.molcel.2019.02.034
doi: 10.1016/j.molcel.2019.02.034
|
20 |
FEI Q, ZOU Z, ROUNDTREE I A, et al. YTHDF2 promotes mitotic entry and is regulated by cell cycle mediators[J]. PLoS Biol, 2020, 18(4): e3000664. doi:10.1371/journal.pbio.3000664
doi: 10.1371/journal.pbio.3000664
|
21 |
LI H, ZHANG N, JIAO X, et al. Downregulation of microRNA-6125 promotes colorectal cancer growth through YTHDF2-dependent recognition of N6-methyladenosine-modified GSK3β[J]. Clin Transl Med, 2021, 11(10): e602. doi:10.1002/ctm2.602
doi: 10.1002/ctm2.602
|
22 |
WANG W, SHAO F, YANG X, et al. METTL3 promotes tumour development by decreasing APC expression mediated by APC mRNA N6-methyladenosine-dependent YTHDF binding[J]. Nat Commun, 2021, 12(1): 3803. doi:10.1038/s41467-021-24860-9
doi: 10.1038/s41467-021-24860-9
|
23 |
KORINEK V, BARKER N, MORIN P J, et al. Constitutive Transcriptional Activation by a β-Catenin-Tcf Complex in APC-/- Colon Carcinoma[J]. Science, 1997, 275(5307): 1784-1787. doi:10.1126/science.275.5307.1784
doi: 10.1126/science.275.5307.1784
|
24 |
YU P, XU T, MA W, et al. PRMT6-mediated transcriptional activation of ythdf2 promotes glioblastoma migration, invasion, and emt via the wnt-β-catenin pathway[J]. J Exp Clin Cancer Res, 2024, 43(1): 116. doi:10.1186/s13046-024-03038-3
doi: 10.1186/s13046-024-03038-3
|
25 |
LIU R, LI W, TAO B, et al. Tyrosine phosphorylation activates 6-phosphogluconate dehydrogenase and promotes tumor growth and radiation resistance[J]. Nat Commun, 2019, 10(1): 991. doi:10.1038/s41467-019-08921-8
doi: 10.1038/s41467-019-08921-8
|
26 |
SHENG H, LI Z, SU S, et al. YTH domain family 2 promotes lung cancer cell growth by facilitating 6-phosphogluconate dehydrogenase mRNA translation[J]. Carcinogenesis, 2020, 41(5): 541-550. doi:10.1093/carcin/bgz152
doi: 10.1093/carcin/bgz152
|
27 |
ITALIANI P, BORASCHI D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation[J]. Front Immunol, 2014, 5:514. doi:10.3389/fimmu.2014.00514
doi: 10.3389/fimmu.2014.00514
|
28 |
MA S, SUN B, DUAN S, et al. YTHDF2 orchestrates tumor-associated macrophage reprogramming and controls antitumor immunity through CD8+ T cells[J]. Nat Immunol, 2023, 24(2): 255-266. doi:10.1038/s41590-022-01398-6
doi: 10.1038/s41590-022-01398-6
|
29 |
ZHANG L, DOU X, ZHENG Z, et al. YTHDF2/m6 A/NF-κB axis controls anti-tumor immunity by regulating intratumoral Tregs[J]. EMBO J, 2023, 42(15): e113126. doi:10.15252/embj.2022113126
doi: 10.15252/embj.2022113126
|
30 |
GRINBERG-BLEYER Y, CARON R, SEELEY J J, et al. The Alternative NF-κB Pathway in Regulatory T Cell Homeostasis and Suppressive Function[J]. J Immunol, 2018, 200(7): 2362-2371. doi:10.4049/jimmunol.1800042
doi: 10.4049/jimmunol.1800042
|
31 |
BETZLER A C, THEODORAKI M N, SCHULER P J, et al. NF-κB and Its Role in Checkpoint Control[J]. Int J Mol Sci, 2020, 21(11): 3949. doi:10.3390/ijms21113949
doi: 10.3390/ijms21113949
|
32 |
张娅威, 施鸿金, 付什, 等. TIGIT的生物学作用及其在膀胱癌中应用的研究进展[J]. 实用医学杂志, 2024,40(12): 1762-1766.
|
33 |
ZHANG L, LI Y, ZHOU L, et al. The m6A Reader YTHDF2 Promotes Bladder Cancer Progression by Suppressing RIG-I–Mediated Immune Response[J]. Cancer Res, 2023, 83(11): 1834-1850. doi:10.1158/0008-5472.can-22-2485
doi: 10.1158/0008-5472.can-22-2485
|
34 |
王月帆, 葛春梅, 尹昊瓒, 等. m6A甲基化修饰识别蛋白YTHDF2在肝癌组织中的表达及临床意义[J]. 现代生物医学进展, 2021, 21(9): 1601-1606.
|
35 |
胡宽,姚磊,李娟妮,等. YTH基因家族在肝癌中的表达和预后价值[J]. 中国普通外科杂志, 2021, 30(7): 836-846.
|
36 |
马琰迪, 卢香云, 何尚峰, 等. m6A甲基化修饰结合蛋白YTHDF2在食管癌组织中的表达及其对食管癌细胞增殖和迁移的影响[J]. 吉林大学学报(医学版), 2022, 48(4): 962-970.
|
37 |
LIU W, LIU C, YOU J, et al. Pan-cancer analysis identifies YTHDF2 as an immunotherapeutic and prognostic biomarker[J]. Front Cell Dev Biol, 2022, 10: 954214. doi:10.3389/fcell.2022.954214
doi: 10.3389/fcell.2022.954214
|
38 |
孟肖娜, 孙旭, 刘怀民. 免疫检查点抑制剂相关结肠炎的研究进展[J]. 实用医学杂志, 2024,40(9): 1314-1319.
|
39 |
HUANG C S, ZHU Y Q, XU Q C, et al. YTHDF2 promotes intrahepatic cholangiocarcinoma progression and desensitises cisplatin treatment by increasing CDKN1B mRNA degradation[J]. Clin Transl Med, 2022, 12(6): e848. doi:10.1002/ctm2.848
doi: 10.1002/ctm2.848
|
40 |
WANG L, DOU X, CHEN S, et al. YTHDF2 inhibition potentiates radiotherapy antitumor efficacy[J]. Cancer Cell, 2023, 41(7): 1294-1308.e8. doi:10.1016/j.ccell.2023.04.019
doi: 10.1016/j.ccell.2023.04.019
|
41 |
SU G, LIU T, HAN X, et al. YTHDF2 is a Potential Biomarker and Associated with Immune Infiltration in Kidney Renal Clear Cell Carcinoma[J]. Front Pharmacol, 2021, 12: 709548. doi:10.3389/fphar.2021.709548
doi: 10.3389/fphar.2021.709548
|