1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi:10.3322/caac.21660
doi: 10.3322/caac.21660
|
2 |
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗指南(2022年版) [J]. 中国实用外科杂志, 2022, 42(3): 241-273.
|
3 |
费发珠, 芦佳骏, 张帅, 等. 肝细胞癌免疫及靶向治疗在特殊人群中的临床应用进展 [J]. 实用医学杂志, 2024, 40(6): 738-742.
|
4 |
CHEN Z, HAN F, DU Y, et al. Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions [J]. Signal Transduct Target Ther, 2023, 8(1): 70. doi:10.1038/s41392-023-01332-8
doi: 10.1038/s41392-023-01332-8
|
5 |
STADLBAUER A, KINFE T M, EYÜPOGLU I, et al. Tissue Hypoxia and Alterations in Microvascular Architecture Predict Glioblastoma Recurrence in Humans [J]. Clin Cancer Res, 2021, 27(6): 1641-1649. doi:10.1158/1078-0432.ccr-20-3580
doi: 10.1158/1078-0432.ccr-20-3580
|
6 |
LI J Q, WU X, GAN L, et al. Hypoxia induces universal but differential drug resistance and impairs anticancer mechanisms of 5-fluorouracil in hepatoma cells [J]. Acta Pharmacol Sin, 2017, 38(12): 1642-1654. doi:10.1038/aps.2017.79
doi: 10.1038/aps.2017.79
|
7 |
IBRAHIM A M, NADY S, SHAFAA M W, et al. Radiation and chemotherapy variable response induced by tumor cell hypoxia: Impact of radiation dose, anticancer drug, and type of cancer [J]. Radiat Environ Biophys, 2022, 61(2): 263-277. doi:10.1007/s00411-022-00974-6
doi: 10.1007/s00411-022-00974-6
|
8 |
JIN H, WANG L, BERNARDS R. Rational combinations of targeted cancer therapies: Background, advances and challenges [J]. Nat Rev Drug Discov, 2023, 22(3): 213-234. doi:10.1038/s41573-022-00615-z
doi: 10.1038/s41573-022-00615-z
|
9 |
徐军红, 姚红兵, 王雪尧, 等. FOLFOX-肝动脉灌注化疗联合应用仑伐替尼和程序性死亡受体1抑制剂治疗中晚期肝癌 [J]. 实用医学杂志, 2024, 40(6): 762-767.
|
10 |
KIM H G, KIM C W, LEE D H, et al. Quinacrine-Mediated Inhibition of Nrf2 Reverses Hypoxia-Induced 5-Fluorouracil Resistance in Colorectal Cancer [J]. Int J Mol Sci, 2019, 20(18): 4366. doi:10.3390/ijms20184366
doi: 10.3390/ijms20184366
|
11 |
CHEN F, ZHUANG M, ZHONG C, et al. Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathway [J]. Oncol Rep, 2015, 33(1): 457-463. doi:10.3892/or.2014.3550
doi: 10.3892/or.2014.3550
|
12 |
THUY L T T, HAI H, KAWADA N. Role of cytoglobin, a novel radical scavenger, in stellate cell activation and hepatic fibrosis [J]. Clin Mol Hepatol, 2020, 26(3): 280-293. doi:10.3350/cmh.2020.0037
doi: 10.3350/cmh.2020.0037
|
13 |
CHAKRABORTY S, JOHN R, NAG A. Cytoglobin in tumor hypoxia: Novel insights into cancer suppression [J]. Tumour Biol, 2014, 35(7): 6207-6219. doi:10.1007/s13277-014-1992-z
doi: 10.1007/s13277-014-1992-z
|
14 |
HOANG D V, THUY L T T, HAI H, et al. Cytoglobin attenuates pancreatic cancer growth via scavenging reactive oxygen species [J]. Oncogenesis, 2022, 11(1): 23. doi:10.1038/s41389-022-00389-4
doi: 10.1038/s41389-022-00389-4
|
15 |
ZHANG J, PEI Y, YANG W, et al. Cytoglobin ameliorates the stemness of hepatocellular carcinoma via coupling oxidative‐nitrosative stress signals [J]. Mol Carcinog, 2018, 58(3): 334-343. doi:10.1002/mc.22931
doi: 10.1002/mc.22931
|
16 |
IANEVSKI A, GIRI A K, AITTOKALLIO T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples [J]. Nucleic Acids Res, 2022, 50(W1): W739-W743. doi:10.1093/nar/gkac382
doi: 10.1093/nar/gkac382
|
17 |
BAO M H R, WONG C C L. Hypoxia, Metabolic Reprogramming, and Drug Resistance in Liver Cancer [J]. Cells, 2021, 10(7): 1715. doi:10.3390/cells10071715
doi: 10.3390/cells10071715
|
18 |
MALIER M, GHARZEDDINE K, LAVERRIERE M H, et al. Hypoxia Drives Dihydropyrimidine Dehydrogenase Expression in Macrophages and Confers Chemoresistance in Colorectal Cancer [J]. Cancer Res, 2021, 81(23): 5963-5976. doi:10.1158/0008-5472.can-21-1572
doi: 10.1158/0008-5472.can-21-1572
|
19 |
XU G, LI M, WU J, et al. Circular RNA circNRIP1 Sponges microRNA-138-5p to Maintain Hypoxia-Induced Resistance to 5-Fluorouracil Through HIF-1α-Dependent Glucose Metabolism in Gastric Carcinoma [J]. Cancer Manag Res, 2020, 12: 2789-2802. doi:10.2147/cmar.s246272
doi: 10.2147/cmar.s246272
|
20 |
XUAN Y, HUR H, HAM I H, et al. Dichloroacetate attenuates hypoxia-induced resistance to 5-fluorouracil in gastric cancer through the regulation of glucose metabolism [J]. Exp Cell Res, 2014, 321(2):219-230. doi:10.1016/j.yexcr.2013.12.009
doi: 10.1016/j.yexcr.2013.12.009
|
21 |
THUY LE T T, MORITA T, YOSHIDA K, et al. Promotion of Liver and Lung Tumorigenesis in DEN-Treated Cytoglobin-Deficient Mice [J]. Am J Pathol, 2011, 179(2): 1050-1060. doi:10.1016/j.ajpath.2011.05.006
doi: 10.1016/j.ajpath.2011.05.006
|
22 |
AJMEERA D, AJUMEERA R. Drug repurposing: A novel strategy to target cancer stem cells and therapeutic resistance [J]. Genes Dis, 2024, 11(1): 148-175. doi:10.1016/j.gendis.2022.12.013
doi: 10.1016/j.gendis.2022.12.013
|
23 |
LIU Q, GUO Z, LI G, et al. Cancer stem cells and their niche in cancer progression and therapy [J]. Cancer Cell Int, 2023, 23(1): 305. doi:10.1186/s12935-023-03130-2
doi: 10.1186/s12935-023-03130-2
|
24 |
MUÑOZ-GALVÁN S, VERDUGO-SIVIANES E M, SANTOS-PEREIRA J M, et al. Essential role of PLD2 in hypoxia-induced stemness and therapy resistance in ovarian tumors [J]. J Exp Clin Cancer Res, 2024, 43(1): 57. doi:10.1186/s13046-024-02988-y
doi: 10.1186/s13046-024-02988-y
|
25 |
OUYANG L, SUN M M, ZHOU P S, et al. LncRNA FOXD1-AS1 regulates pancreatic cancer stem cell properties and 5-FU resistance by regulating the miR-570-3p/SPP1 axis as a ceRNA [J]. Cancer Cell Int, 2024, 24(1): 4. doi:10.1186/s12935-023-03181-5
doi: 10.1186/s12935-023-03181-5
|