实用医学杂志 ›› 2025, Vol. 41 ›› Issue (2): 288-293.doi: 10.3969/j.issn.1006-5725.2025.02.020
• 综述 • 上一篇
付强1,2,卢钟琦2,3,常颖1,2,金铁峰2,张美花1,2()
收稿日期:
2024-06-17
出版日期:
2025-01-25
发布日期:
2025-01-26
通讯作者:
张美花
E-mail:zhangmeihua@ybu.edu.cn
基金资助:
Qiang FU1,2,Zhongqi LU2,3,Ying CHANG1,2,Tiefeng JIN2,Meihua. ZHANG1,2()
Received:
2024-06-17
Online:
2025-01-25
Published:
2025-01-26
Contact:
Meihua. ZHANG
E-mail:zhangmeihua@ybu.edu.cn
摘要:
近年来,肿瘤免疫治疗备受瞩目,随着研究的深入而迅速发展,产生了多种重要的治疗策略。免疫检查点抑制剂已成为该领域中的核心方法之一,其研究成果受到广泛关注。该文拟对当前已知的几种抗肿瘤免疫检查点及其相关治疗进展进行系统综述,包括PD-1/PD-L1、CTLA-4、LAG-3、TIM-3、TIGIT和VISTA等关键检查点。通过详细探讨这些检查点的作用机制、现有的临床应用情况以及未来的研究方向,旨在为优化肿瘤免疫治疗策略提供有力参考与指导。
中图分类号:
付强,卢钟琦,常颖,金铁峰,张美花. 免疫检查点及抑制剂抗肿瘤作用的研究进展[J]. 实用医学杂志, 2025, 41(2): 288-293.
Qiang FU,Zhongqi LU,Ying CHANG,Tiefeng JIN,Meihua. ZHANG. Research progress on the antitumor effects of immune checkpoint inhibitors[J]. The Journal of Practical Medicine, 2025, 41(2): 288-293.
1 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi:10.3322/caac.21660
doi: 10.3322/caac.21660 |
2 |
HE Y, HUANG Q, GE Y, et al. The role of circular RNA in tumor microenvironment and immunotherapy [J]. Int J Biol Macromol, 2023, 242(Pt 4): 124929. doi:10.1016/j.ijbiomac.2023.124929
doi: 10.1016/j.ijbiomac.2023.124929 |
3 |
TANG L, WEI F, WU Y, et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods [J]. J Exp Clin Cancer Res, 2018, 37(1): 87. doi:10.1186/s13046-018-0758-7
doi: 10.1186/s13046-018-0758-7 |
4 |
KRALL J A, REINHARDT F, MERCURY O A, et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy [J]. Sci Transl Med, 2018, 10(436):489. doi:10.1126/scitranslmed.aan3464
doi: 10.1126/scitranslmed.aan3464 |
5 |
HANAHAN D. Hallmarks of Cancer: New Dimensions [J]. Cancer Discov, 2022, 12(1): 31-46. doi:10.1158/2159-8290.cd-21-1059
doi: 10.1158/2159-8290.cd-21-1059 |
6 |
BALDANZI G. Immune Checkpoint Receptors Signaling in T Cells [J]. Int J Mol Sci, 2022, 23(7):3529. doi:10.3390/ijms23073529
doi: 10.3390/ijms23073529 |
7 | 刘小伟, 宋金恩, 刘馨雨,等. 阻断循环肿瘤细胞免疫检查点HLA-E:CD94-NKG2A抑制肿瘤转移[J]. 科学通报, 2023, 68(15): 1864-1866. |
8 |
EGGERMONT A M M, CHIARION-SILENI V, GROB J J, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): A randomised, double-blind, phase 3 trial [J]. Lancet Oncol, 2015, 16(5): 522-530. doi:10.1016/s1470-2045(15)70122-1
doi: 10.1016/s1470-2045(15)70122-1 |
9 |
HODI F S, CHIARION-SILENI V, GONZALEZ R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial [J]. Lancet Oncol, 2018, 19(11): 1480-1492. doi:10.1016/s1470-2045(18)30700-9
doi: 10.1016/s1470-2045(18)30700-9 |
10 |
MOTZER R J, TANNIR N M, MCDERMOTT D F, et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma [J]. N Engl J Med, 2018, 378(14): 1277-1290. doi:10.1056/nejmoa1712126
doi: 10.1056/nejmoa1712126 |
11 |
RECK M, SCHENKER M, LEE K H, et al. Nivolumab plus ipilimumab versus chemotherapy as first-line treatment in advanced non-small-cell lung cancer with high tumour mutational burden: Patient-reported outcomes results from the randomised, open-label, phase III CheckMate 227 trial [J]. Eur J Cancer, 2019, 116: 137-147. doi:10.1016/j.ejca.2019.05.008
doi: 10.1016/j.ejca.2019.05.008 |
12 | PAZ-ARES L G, RAMALINGAM S S, T-E CIULEANU, et al. First-Line Nivolumab Plus Ipilimumab in Advanced NSCLC: 4-Year Outcomes From the Randomized, Open-Label, Phase 3 CheckMate 227 Part 1 Trial [J]. J Thorac Oncol, 2022, 17(2): 289-308. |
13 |
PAZ-ARES L, CIULEANU T E, COBO M, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial [J]. Lancet Oncol, 2021, 22(2): 198-211. doi:10.1016/s1470-2045(20)30641-0
doi: 10.1016/s1470-2045(20)30641-0 |
14 |
YI M, ZHENG X, NIU M, et al. Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions [J]. Mol Cancer, 2022, 21(1): 28. doi:10.1186/s12943-021-01489-2
doi: 10.1186/s12943-021-01489-2 |
15 | 张文欣, 郭弘洁, 潘孝汇,等. 免疫检查点抑制剂的研究进展 [J]. 药学进展, 2022, 46(12): 910-921. |
16 |
TANG Q, CHEN Y, LI X, et al. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers [J]. Front Immunol, 2022, 13: 964442. doi:10.3389/fimmu.2022.964442
doi: 10.3389/fimmu.2022.964442 |
17 | 蒋丽媛, 卢晶, 崔志华,等. 阿帕替尼联合PD-1抑制剂治疗非小细胞肺癌一例 [J]. 海军医学杂志, 2021, 42(5): 604-606. |
18 |
GORDON S R, MAUTE R L, DULKEN B W, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity [J]. Nature, 2017, 545(7655): 495-499. doi:10.1038/nature22396
doi: 10.1038/nature22396 |
19 |
MORENO-VICENTE J, WILLOUGHBY J E, TAYLOR M C, et al. Fc-null anti-PD-1 monoclonal antibodies deliver optimal checkpoint blockade in diverse immune environments [J]. J Immunother Cancer, 2022, 10(1):e003735. doi:10.1136/jitc-2021-003735
doi: 10.1136/jitc-2021-003735 |
20 |
PERANZONI E, LEMOINE J, VIMEUX L, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment [J]. Proc Natl Acad Sci U S A, 2018, 115(17): E4041-E4050. doi:10.1073/pnas.1720948115
doi: 10.1073/pnas.1720948115 |
21 |
PAVELESCU L A, ENACHE R M, ROŞU O A, et al. Predictive Biomarkers and Resistance Mechanisms of Checkpoint Inhibitors in Malignant Solid Tumors[J]. Int J Mol Sci, 2024, 25(17):9659. doi:10.3390/ijms25179659
doi: 10.3390/ijms25179659 |
22 |
ROWSHANRAVAN B, HALLIDAY N, SANSOM D M. CTLA-4: A moving target in immunotherapy [J]. Blood, 2018, 131(1): 58-67. doi:10.1182/blood-2017-06-741033
doi: 10.1182/blood-2017-06-741033 |
23 |
KENNEDY A, WATERS E, ROWSHANRAVAN B, et al. Differences in CD80 and CD86 transendocytosis reveal CD86 as a key target for CTLA-4 immune regulation [J]. Nat Immunol, 2022, 23(9): 1365-1378. doi:10.1038/s41590-022-01289-w
doi: 10.1038/s41590-022-01289-w |
24 |
QURESHI O S, ZHENG Y, NAKAMURA K, et al. Trans-endocytosis of CD80 and CD86: A molecular basis for the cell-extrinsic function of CTLA-4 [J]. Science, 2011, 332(6029): 600-603. doi:10.1126/science.1202947
doi: 10.1126/science.1202947 |
25 |
ZHAO Y, LEE C K, LIN C H, et al. PD-L1:CD80 Cis-Heterodimer Triggers the Co-stimulatory Receptor CD28 While Repressing the Inhibitory PD-1 and CTLA-4 Pathways [J]. Immunity, 2019, 51(6):1059-1073. doi:10.1016/j.immuni.2019.11.003
doi: 10.1016/j.immuni.2019.11.003 |
26 | 肖晶晶, 黄美玲, 延常姣,等. Her-2阳性乳腺癌新辅助化疗联合靶向治疗获得病理完全缓解的影响因素[J]. 实用医学杂志. 2022, 38(5): 542-546. |
27 |
KORMAN A J, GARRETT-THOMSON S C, LONBERG N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial [J]. Nat Rev Drug Discov, 2022, 21(7): 509-528. doi:10.1038/s41573-021-00345-8
doi: 10.1038/s41573-021-00345-8 |
28 |
LLOVET J M, CASTET F, HEIKENWALDER M, et al. Immunotherapies for hepatocellular carcinoma [J]. Nat Rev Clin Oncol, 2022, 19(3): 151-172. doi:10.1038/s41571-021-00573-2
doi: 10.1038/s41571-021-00573-2 |
29 |
LINGEL H, BRUNNER-WEINZIERL M C. CTLA-4 (CD152): A versatile receptor for immune-based therapy [J]. Semin Immunol, 2019, 42: 101298. doi:10.1016/j.smim.2019.101298
doi: 10.1016/j.smim.2019.101298 |
30 |
JIANG D M, FYLES A, NGUYEN L T, et al. Phase I study of local radiation and tremelimumab in patients with inoperable locally recurrent or metastatic breast cancer [J]. Oncotarget, 2019, 10(31): 2947-2958. doi:10.18632/oncotarget.26893
doi: 10.18632/oncotarget.26893 |
31 |
CAI X, ZHAN H, YE Y, et al. Current Progress and Future Perspectives of Immune Checkpoint in Cancer and Infectious Diseases[J]. Front Genet, 2021, 12:785153. doi:10.3389/fgene.2021.785153
doi: 10.3389/fgene.2021.785153 |
32 |
MARUHASHI T, SUGIURA D, OKAZAKI I M, et al. LAG-3: From molecular functions to clinical applications [J]. J Immunother Cancer, 2020, 8(2):e001014. doi:10.1136/jitc-2020-001014
doi: 10.1136/jitc-2020-001014 |
33 |
MARUHASHI T, SUGIURA D, OKAZAKI I M, et al. Binding of LAG-3 to stable peptide-MHC class II limits T cell function and suppresses autoimmunity and anti-cancer immunity [J]. Immunity, 2022, 55(5):912-924. doi:10.1016/j.immuni.2022.03.013
doi: 10.1016/j.immuni.2022.03.013 |
34 |
WANG J, SANMAMED M F, DATAR I, et al. Fibrinogen-like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3 [J]. Cell, 2019, 176(1/2):334-347. doi:10.1016/j.cell.2018.11.010
doi: 10.1016/j.cell.2018.11.010 |
35 |
AMARIA R N, POSTOW M, BURTON E M, et al. Neoadjuvant relatlimab and nivolumab in resectable melanoma [J]. Nature, 2022, 611(7934): 155-160. doi:10.1038/s41586-022-05368-8
doi: 10.1038/s41586-022-05368-8 |
36 |
SAUER N, SZLASA W, JONDERKO L, et al. LAG-3 as a Potent Target for Novel Anticancer Therapies of a Wide Range of Tumors [J]. Int J Mol Sci, 2022, 23(17):9958. doi:10.3390/ijms23179958
doi: 10.3390/ijms23179958 |
37 |
ALBRECHT L J, LIVINGSTONE E, ZIMMER L, et al. The Latest Option: Nivolumab and Relatlimab in Advanced Melanoma [J]. Curr Oncol Rep, 2023, 25(6): 647-657. doi:10.1007/s11912-023-01406-4
doi: 10.1007/s11912-023-01406-4 |
38 |
ABDEL-RAHMAN S A, REHMAN A U, GABR M T. Discovery of First-in-Class Small Molecule Inhibitors of Lymphocyte Activation Gene 3 (LAG-3) [J]. ACS Med Chem Lett, 2023, 14(5): 629-635. doi:10.1021/acsmedchemlett.3c00054
doi: 10.1021/acsmedchemlett.3c00054 |
39 |
SCHÖFFSKI P, TAN D S W, MARTÍN M, et al. Phase I/II study of the LAG-3 inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies [J]. J Immunother Cancer, 2022, 10(2):e007736. doi:10.1136/jitc-2021-003776
doi: 10.1136/jitc-2021-003776 |
40 | 张红生, 米锦涛, 曹维维,等. 乳腺癌免疫检查点及其抑制剂的研究进展 [J]. 癌症进展, 2023, 21(5): 481-485,516. |
41 |
LIU R, ZHANG J, CHEN Y, et al. Safety, tolerability, and pharmacokinetics of HLX26 (an anti-LAG3 antibody) in patients with advanced or metastatic solid tumors or lymphomas [J]. 2023, 41(): e14671. doi:10.1200/jco.2023.41.16_suppl.e14671
doi: 10.1200/jco.2023.41.16_suppl.e14671 |
42 |
D'HAENS G, PEYRIN-BIROULET L, MARKS D J B, et al. A randomised, double-blind, placebo-controlled study of the LAG-3-depleting monoclonal antibody GSK2831781 in patients with active ulcerative colitis [J]. Aliment Pharmacol Ther, 2023, 58(3): 283-296. doi:10.1111/apt.17557
doi: 10.1111/apt.17557 |
43 |
GUO Q, ZHAO P, ZHANG Z, et al. TIM-3 blockade combined with bispecific antibody MT110 enhances the anti-tumor effect of γδ T cells [J]. Cancer Immunol Immunother, 2020, 69(12): 2571-2587. doi:10.1007/s00262-020-02638-0
doi: 10.1007/s00262-020-02638-0 |
44 |
STENGEL K F, HARDEN-BOWLES K, YU X, et al. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering [J]. Proc Natl Acad Sci U S A, 2012, 109(14): 5399-5404. doi:10.1073/pnas.1120606109
doi: 10.1073/pnas.1120606109 |
45 |
O'DONNELL J S, MADORE J, LI X Y, et al. Tumor intrinsic and extrinsic immune functions of CD155 [J]. Semin Cancer Biol, 2020, 65: 189-196. doi:10.1016/j.semcancer.2019.11.013
doi: 10.1016/j.semcancer.2019.11.013 |
46 |
DIXON K O, SCHORER M, NEVIN J, et al. Functional Anti-TIGIT Antibodies Regulate Development of Autoimmunity and Antitumor Immunity [J]. J Immunol, 2018, 200(8): 3000-3007. doi:10.4049/jimmunol.1700407
doi: 10.4049/jimmunol.1700407 |
47 |
CHO B C, ABREU D R, HUSSEIN M, et al. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): Primary and follow-up analyses of a randomised, double-blind, phase 2 study [J]. Lancet Oncol, 2022, 23(6): 781-792. doi:10.1016/s1470-2045(22)00226-1
doi: 10.1016/s1470-2045(22)00226-1 |
48 |
NIU J, MAURICE-DROR C, LEE D H, et al. First-in-human phase 1 study of the anti-TIGIT antibody vibostolimab as monotherapy or with pembrolizumab for advanced solid tumors, including non-small-cell lung cancer☆ [J]. Ann Oncol, 2022, 33(2): 169-180. doi:10.1016/j.annonc.2021.11.002
doi: 10.1016/j.annonc.2021.11.002 |
49 |
MAHONEY K M, FREEMAN G J. Acidity changes immunology: A new VISTA pathway [J]. Nat Immunol, 2020, 21(1): 13-16. doi:10.1038/s41590-019-0563-2
doi: 10.1038/s41590-019-0563-2 |
50 |
TAGLIAMENTO M, AGOSTINETTO E, BOREA R, et al. VISTA: A Promising Target for Cancer Immunotherapy?[J]. Immunotargets Ther, 2021, 10: 185-200. doi:10.2147/itt.s260429
doi: 10.2147/itt.s260429 |
51 |
HOSSEINKHANI N, DERAKHSHANI A, SHADBAD M A, et al. The Role of V-Domain Ig Suppressor of T Cell Activation (VISTA) in Cancer Therapy: Lessons Learned and the Road Ahead [J]. Front Immunol, 2021, 12: 676181. doi:10.3389/fimmu.2021.676181
doi: 10.3389/fimmu.2021.676181 |
52 |
KAKAVAND H, JACKETT L A, MENZIES A M, et al. Negative immune checkpoint regulation by VISTA: A mechanism of acquired resistance to anti-PD-1 therapy in metastatic melanoma patients [J]. Mod Pathol, 2017, 30(12): 1666-1676. doi:10.1038/modpathol.2017.89
doi: 10.1038/modpathol.2017.89 |
53 |
ZONG L, MO S, SUN Z, et al. Analysis of the immune checkpoint V-domain Ig-containing suppressor of T-cell activation (VISTA) in endometrial cancer [J]. Mod Pathol, 2022, 35(2): 266-273. doi:10.1038/s41379-021-00901-y
doi: 10.1038/s41379-021-00901-y |
54 |
IM E, SIM D Y, LEE H J, et al. Immune functions as a ligand or a receptor, cancer prognosis potential, clinical implication of VISTA in cancer immunotherapy [J]. Semin Cancer Biol, 2022, 86(Pt 2): 1066-1075. doi:10.1016/j.semcancer.2021.08.008
doi: 10.1016/j.semcancer.2021.08.008 |
55 |
LIU J, LIANG Y, YANG H, et al. Small-Molecule Radiotracers for Visualization of V-Domain Immunoglobulin Suppressor of T Cell Activation [J]. J Med Chem, 2024, 67(19): 17690-17700. doi:10.1021/acs.jmedchem.4c01690
doi: 10.1021/acs.jmedchem.4c01690 |
56 |
WANG J, WU G, MANICK B, et al. VSIG-3 as a ligand of VISTA inhibits human T-cell function [J]. Immunology, 2019, 156(1): 74-85. doi:10.1111/imm.13001
doi: 10.1111/imm.13001 |
[1] | 李春燕,肖婷,伍邦翠,陈永,田梅. 蛋白激酶Cβ抑制剂通过调节巨噬细胞表型对移植期间的肾缺血再灌注损伤的影响[J]. 实用医学杂志, 2025, 41(1): 23-29. |
[2] | 何伟,刘丽萍,卓静薇,张小冬,杨通,冯巨滨. 拮抗CC趋化因子受体5信号诱导肿瘤细胞凋亡并调节肿瘤微环境抑制肿瘤生长[J]. 实用医学杂志, 2024, 40(9): 1204-1210. |
[3] | 丁宇轩,郭沥泞,沈佳怡,王丽君. 放疗联合PD-1抑制剂及酪氨酸激酶抑制剂治疗MSS型结直肠癌肝转移疗效及安全性[J]. 实用医学杂志, 2024, 40(9): 1293-1297. |
[4] | 孟肖娜,孙旭,刘怀民. 免疫检查点抑制剂相关结肠炎的研究进展[J]. 实用医学杂志, 2024, 40(9): 1314-1319. |
[5] | 张晴,黎土娣,陈荣,曾智桓. SGLT2i预防经皮冠状动脉介入术后支架内再狭窄的研究进展[J]. 实用医学杂志, 2024, 40(8): 1175-1180. |
[6] | 马希雅,季虎,朱泽华,潘博,谢强,姚晓波. 根治性放化疗前18F-FDG PET/CT代谢异质性参数结合临床特征对食管鳞状细胞癌预后的预测价值[J]. 实用医学杂志, 2024, 40(7): 966-971. |
[7] | 徐军红,姚红兵,王雪尧,郭威,陆才进,吴嘉兴,蒋建晖,赵东康. FOLFOX-肝动脉灌注化疗联合应用仑伐替尼和程序性死亡受体1抑制剂治疗中晚期肝癌[J]. 实用医学杂志, 2024, 40(6): 762-767. |
[8] | 徐婷,黄薇,杨力,余浩. 肿瘤内皮标记物1通过丝裂原活化蛋白激酶途径介导内皮细胞对血管新生及对心力衰竭心肌重塑[J]. 实用医学杂志, 2024, 40(6): 780-786. |
[9] | 周颖,蒋大军,田勇,古雍翔,杨国辉. 抑制TRAF6调节炎症和自噬改善脓毒症小鼠的心肌损伤和心功能[J]. 实用医学杂志, 2024, 40(5): 608-614. |
[10] | 谭敏华,陈威,郭锦辉,周泳健,雷伟华,刘慕诗,申动,申洪. 中老年肠道炎性肌纤维母细胞瘤临床病理及预后特点[J]. 实用医学杂志, 2024, 40(4): 503-507. |
[11] | 谭毅刚,邝浩斌,傅红梅,李春燕,赵小冰,薛丽京. 自身免疫疾病应用肿瘤坏死因子-α抑制剂后并发结核病33例临床特征分析[J]. 实用医学杂志, 2024, 40(3): 378-383. |
[12] | 邵将,李琳,郭岩松,孙程圆,温稀超,郑克彬,史彦芳. CD73/NT5E在胶质母细胞瘤中的研究进展[J]. 实用医学杂志, 2024, 40(3): 428-431. |
[13] | 张建芳,孙雪琴,崔叶谦,陈洋,王绍波. 血管内皮生长因子抑制剂在胆管细胞癌治疗中的应用进展[J]. 实用医学杂志, 2024, 40(24): 3554-3560. |
[14] | 陈丽萍,罗菊玉,彭章艳,吴秀兰,杨宇宏,石连炎,李笑云,王灵. 肿瘤病灶体积与子宫体积比值和组织中Ki-67、p16蛋白表达与子宫内膜癌病理特征及复发的关联[J]. 实用医学杂志, 2024, 40(23): 3367-3372. |
[15] | 江平,罗晓琴,翟少倩,曹成珠,苏占海. 干扰素刺激基因15在消化道恶性肿瘤中的作用及机制研究进展[J]. 实用医学杂志, 2024, 40(23): 3394-3404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||