实用医学杂志 ›› 2024, Vol. 40 ›› Issue (13): 1895-1900.doi: 10.3969/j.issn.1006-5725.2024.13.023
• 综述 • 上一篇
收稿日期:
2023-12-28
出版日期:
2024-07-10
发布日期:
2024-07-09
通讯作者:
张倩
E-mail:qianzhang@njmu.edu.cn
基金资助:
Received:
2023-12-28
Online:
2024-07-10
Published:
2024-07-09
Contact:
Qian. ZHANG
E-mail:qianzhang@njmu.edu.cn
摘要:
T细胞耗竭多发生在慢性感染、癌症及自身免疫性疾病中,持续的抗原刺激会导致耗竭的T细胞产生,其主要特征为效应功能的逐渐丧失,抑制性受体的持续高表达,转录及表观遗传学的改变和代谢的失调等。对T细胞耗竭的研究正在不断深入,其具体机制的阐明将为呼吸系统疾病中慢性感染、肺癌及慢性气道炎症性疾病的免疫治疗方法提供新的思路。本文探讨了T细胞耗竭产生的影响因素和特征,并回顾了T细胞耗竭与呼吸系统疾病的研究现状。
中图分类号:
丁紫琪,张倩. T细胞耗竭与呼吸系统疾病关系的研究进展[J]. 实用医学杂志, 2024, 40(13): 1895-1900.
Ziqi DING,Qian. ZHANG. Research progress in T cell exhaustion and its relationship with respiratory diseases[J]. The Journal of Practical Medicine, 2024, 40(13): 1895-1900.
1 |
GALLIMORE A, GLITHERO A, GODKIN A, et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes[J]. J Exp Med, 1998,187(9):1383-1393. doi:10.1084/jem.187.9.1383
doi: 10.1084/jem.187.9.1383 |
2 |
SHIN M S, PARK H J, YOUNG J, et al. Implication of IL-7 receptor alpha chain expression by CD8+ T cells and its signature in defining biomarkers in aging[J]. Immun Ageing, 2022,19(1):1-8. doi:10.1186/s12979-022-00324-6
doi: 10.1186/s12979-022-00324-6 |
3 |
WHERRY E J. T cell exhaustion[J]. Nat Immunol, 2011, 12(6):492-499. doi:10.1038/ni.2035
doi: 10.1038/ni.2035 |
4 |
LENG A, SHAH M, AHMAD S A, et al. Pathogenesis underlying neurological manifestations of long COVID syndrome and potential therapeutics[J]. Cells, 2023,12(5):816. doi:10.3390/cells12050816
doi: 10.3390/cells12050816 |
5 |
OSUCH S, LASKUS T, PERLEJEWSKI K, et al. CD8+ T-cell exhaustion phenotype in chronic hepatitis c virus infection is associated with epitope sequence variation[J]. Front Immunol, 2022,13:903. doi:10.3389/fimmu.2022.832206
doi: 10.3389/fimmu.2022.832206 |
6 |
MISHRA K, SINGH M, SARASWAT D, et al. Dysfunctional state of T cells or exhaustion during chronic viral infections and COVID-19: A review[J]. Viral Immunol, 2022,35(4):284-290. doi:10.1089/vim.2022.0002
doi: 10.1089/vim.2022.0002 |
7 |
GAO Z, FENG Y, XU J, et al. T-cell exhaustion in immune-mediated inflammatory diseases: New implications for immunotherapy[J]. Front Immunol, 2022,13:977394. doi:10.3389/fimmu.2022.977394
doi: 10.3389/fimmu.2022.977394 |
8 |
DOLINA J S, BRAECKEL-BUDIMIR N V, THOMAS G D, et al. CD8+ T cell exhaustion in cancer[J]. Front Immunol, 2021,12:715234. doi:10.3389/fimmu.2021.715234
doi: 10.3389/fimmu.2021.715234 |
9 | BARNOVA M, BOBCAKOVA A, URDOVA V, et al. Inhibitory immune checkpoint molecules and exhaustion of T cells in COVID-19[J]. Physiol Res, 2021,70(S2):S227-S247. |
10 |
QUIGLEY M, PEREYRA F, NILSSON B, et al.Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF[J]. Nat Med,2010,16(10):1147-1151. doi:10.1038/nm.2232
doi: 10.1038/nm.2232 |
11 | HAN Y, LIU D, LI L. PD-1/PD-L1 pathway: current researches in cancer[J]. Am J Cancer Res, 2020,10(3):727-742. |
12 |
BROOKS D G, TRIFILO M J, EDELMANN K H, et al. Interleukin-10 determines viral clearance or persistence in vivo[J]. Nat Med, 2006,12(11):1301-1309. doi:10.1038/nm1492
doi: 10.1038/nm1492 |
13 |
HASHIMOTO M, ARAKI K, CARDENAS M A, et al. PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program[J]. Nature, 2022,610(7930):173-181. doi:10.1038/s41586-022-05257-0
doi: 10.1038/s41586-022-05257-0 |
14 |
HU Y, HUDSON W H, KISSICK H T, et al. TGF-beta regulates the stem-like state of PD-1+ TCF-1+ virus-specific CD8 T cells during chronic infection[J]. J Exp Med, 2022,219(10) :e20211574. doi:10.1084/jem.20211574
doi: 10.1084/jem.20211574 |
15 |
ELSAESSER H, SAUER K, BROOKS D G. IL-21 is required to control chronic viral infection[J]. Science, 2009, 324(5934):1569-1572. doi:10.1126/science.1174182
doi: 10.1126/science.1174182 |
16 |
CUI C, WANG J, FAGERBERG E, et al. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses[J]. Cell,2021,184(25):6101-6118. doi:10.1016/j.cell.2021.11.007
doi: 10.1016/j.cell.2021.11.007 |
17 |
REN H M, LUKACHER A E, RAHMAN Z S M, et al. New developments implicating IL-21 in autoimmune disease[J]. J Autoimmun,2021,122:102689. doi:10.1016/j.jaut.2021.102689
doi: 10.1016/j.jaut.2021.102689 |
18 |
ELAHI S, SHAHBAZ S, HOUSTON S. Selective upregulation of CTLA-4 on CD8+ T cells restricted by HLA-B* 35Px renders them to an exhausted phenotype in HIV-1 infection[J]. PLoS Pathog, 2020,16(8):e1008696. doi:10.1371/journal.ppat.1008696
doi: 10.1371/journal.ppat.1008696 |
19 |
OYEWOLE-SAID D, KONDURI V, VAZQUEZ-PEREZ J, et al. Beyond T-cells: functional characterization of CTLA-4 expression in immune and non-immune cell types[J]. Front Immunol, 2020,11:608024. doi:10.3389/fimmu.2020.608024
doi: 10.3389/fimmu.2020.608024 |
20 |
CHOCARRO L, BLANCO E, ZUAZO M, et al. Understanding LAG-3 signaling[J]. Int J Mol Sci, 2021,22(10):5282. doi:10.3390/ijms22105282
doi: 10.3390/ijms22105282 |
21 |
HAN J, WAN M, MA Z, et al. The TOX subfamily: all-round players in the immune system[J]. Clin Exp Immunol, 2022,208(3):268-280. doi:10.1093/cei/uxac037
doi: 10.1093/cei/uxac037 |
22 |
SEN D R, KAMINSKI J, BARNITZ R A, et al. The epigenetic landscape of T cell exhaustion[J]. Science, 2016, 354(6316):1165-1169. doi:10.1126/science.aae0491
doi: 10.1126/science.aae0491 |
23 | 刘勋. 结核抗原持续刺激致T细胞耗竭实验研究及亚单位疫苗LT70-DPC的研发[D]. 兰州:兰州大学, 2016. |
24 |
PHILLIPS B L, MEHRA S, AHSAN M H, et al. LAG3 expression in active mycobacterium tuberculosis infections[J]. Am J Pathol, 2015,185(3):820-833. doi:10.1016/j.ajpath.2014.11.003
doi: 10.1016/j.ajpath.2014.11.003 |
25 |
SHEN L, GAO Y, LIU Y, et al. PD-1/PD-L pathway inhibits M.tb-specific CD4+ T-cell functions and phagocytosis of macrophages in active tuberculosis[J]. Sci Rep, 2016,6:38362. doi:10.1038/srep38362
doi: 10.1038/srep38362 |
26 |
JAYARAMAN P, JACQUES M K, ZHU C, et al. TIM3 mediates T cell exhaustion during mycobacterium tuberculosis infection[J]. PLoS Pathog, 2016,12(3):e1005490. doi:10.1371/journal.ppat.1005490
doi: 10.1371/journal.ppat.1005490 |
27 |
LOMBARDI A, VILLA S, CASTELLI V, et al. T-Cell Exhaustion in Mycobacterium tuberculosis and Nontuberculous Mycobacteria Infection: Pathophysiology and Therapeutic Perspectives[J]. Microorganisms, 2021,9(12):2460. doi:10.3390/microorganisms9122460
doi: 10.3390/microorganisms9122460 |
28 |
LIU X, LI F, NIU H, et al. IL-2 Restores T-Cell Dysfunction Induced by Persistent Mycobacterium tuberculosis Antigen Stimulation[J]. Front Immunol, 2019, 10:2350. doi:10.3389/fimmu.2019.02350
doi: 10.3389/fimmu.2019.02350 |
29 |
RHA M S, SHIN E C. Activation or exhaustion of CD8+ T cells in patients with COVID-19[J]. Cell Mol Immunol, 2021,18(10):2325-2333. doi:10.1038/s41423-021-00750-4
doi: 10.1038/s41423-021-00750-4 |
30 |
LIU L, WANG A, LIU X, et al. Blocking TIGIT/CD155 signalling reverses CD8+ T cell exhaustion and enhances the antitumor activity in cervical cancer[J]. J Transl Med, 2022,20(1):1-13. doi:10.1186/s12967-022-03480-x
doi: 10.1186/s12967-022-03480-x |
31 |
SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023,73(1):17-48. doi:10.3322/caac.21763
doi: 10.3322/caac.21763 |
32 |
DUTTA S, GANGULY A, CHATTERJEE K, et al. Targets of immune escape mechanisms in cancer: basis for development and evolution of cancer immune checkpoint inhibitors[J]. Biology (Basel), 2023,12(2):218. doi:10.3390/biology12020218
doi: 10.3390/biology12020218 |
33 |
CHI X, LUO S, YE P, et al. T-cell exhaustion and stemness in antitumor immunity: characteristics, mechanisms, and implications[J]. Front Immunol, 2023,14:1104771. doi:10.3389/fimmu.2023.1104771
doi: 10.3389/fimmu.2023.1104771 |
34 |
CHU X, TIAN W, WANG Z, et al. Co-inhibition of TIGIT and PD-1/PD-L1 in cancer immunotherapy: mechanisms and clinical trials[J]. Mol Cancer, 2023,22(1):1-31. doi:10.1186/s12943-023-01800-3
doi: 10.1186/s12943-023-01800-3 |
35 |
SU Y, YAMAZAKI S, MORISUE R, et al. Tumor-infiltrating T cells concurrently overexpress CD200R with immune checkpoints PD-1, CTLA-4, and TIM-3 in non-small-cell lung cancer[J]. Pathobiology, 2021,88(3):218-227. doi:10.1159/000511557
doi: 10.1159/000511557 |
36 | 武阳,陆翰杰,水会锋. 既往免疫经治的晚期非小细胞肺癌患者接受安罗替尼联合PD⁃1单抗的疗效及安全性[J]. 实用医学杂志, 2023,39(5):572-578. |
37 |
ITAHASHI K, IRIE T, YUDA J, et al. BATF epigenetically and transcriptionally controls the activation program of regulatory T cells in human tumors[J]. Sci Immunol, 2022,7(76):eabk0957. doi:10.1126/sciimmunol.abk0957
doi: 10.1126/sciimmunol.abk0957 |
38 |
ZHANG Z, LIN M, WANG J, et al. Calycosin inhibits breast cancer cell migration and invasion by suppressing EMT via BATF/TGF-β1[J]. Aging (Albany NY), 2021,13(12):16009-16023. doi:10.18632/aging.203093
doi: 10.18632/aging.203093 |
39 |
ZHANG X, ZHANG C, QIAO M, et al. Depletion of BATF in CAR-T cells enhances antitumor activity by inducing resistance against exhaustion and formation of central memory cells[J]. Cancer Cell, 2022,40(11):1407-1422. doi:10.1016/j.ccell.2022.09.013
doi: 10.1016/j.ccell.2022.09.013 |
40 |
TREFNY M P, KIRCHHAMMER N, DER MAUR P AUF, et al. Deletion of SNX9 alleviates CD8 T cell exhaustion for effective cellular cancer immunotherapy[J]. Nat Commun, 2023,14(1):86. doi:10.1038/s41467-022-35583-w
doi: 10.1038/s41467-022-35583-w |
41 |
ZHANG H, LIU S, LI Y, et al. Dysfunction of S100A4+ effector memory CD8+ T cells aggravates asthma[J]. Eur J Immunol,2022,52(6):978-993. doi:10.1002/eji.202149572
doi: 10.1002/eji.202149572 |
42 |
DIEHL S, KRAHL T, RINALDI L, et al. Inhibition of NFAT specifically in T cells prevents allergic pulmonary inflammation[J]. J Immunol, 2004,172(6):3597-3603. doi:10.4049/jimmunol.172.6.3597
doi: 10.4049/jimmunol.172.6.3597 |
43 |
LIN M, HUANG Z, CHEN Y, et al. Lung cancer patients with chronic obstructive pulmonary disease benefit from anti-PD-1/PD-L1 therapy[J]. Front Immunol, 2022,13:1038715. doi:10.3389/fimmu.2022.1038715
doi: 10.3389/fimmu.2022.1038715 |
[1] | 邵将,李琳,郭岩松,孙程圆,温稀超,郑克彬,史彦芳. CD73/NT5E在胶质母细胞瘤中的研究进展[J]. 实用医学杂志, 2024, 40(3): 428-431. |
[2] | 梁冬露,马礼兵. 呼出气分析技术在呼吸系统疾病中的应用及进展[J]. 实用医学杂志, 2024, 40(22): 3124-3129. |
[3] | 孙昭晨,蒋君妍,陈一天. CAR-T细胞在结直肠癌治疗方面的研究进展[J]. 实用医学杂志, 2024, 40(18): 2640-2646. |
[4] | 张娅威,施鸿金,付什,王剑松,王海峰. TIGIT的生物学作用及其在膀胱癌中应用的研究进展[J]. 实用医学杂志, 2024, 40(12): 1762-1766. |
[5] | 文习之,张晓实. 黑色素瘤个体化治疗策略:基于新抗原的特异性免疫治疗[J]. 实用医学杂志, 2024, 40(10): 1331-1337. |
[6] | 吴凯怡 吕学东 何海艳 陈金亮 . 冷冻消融联合免疫治疗在非小细胞肺癌治疗中的应用进展 [J]. 实用医学杂志, 2023, 39(8): 1058-1062. |
[7] | 张习杰 李昕 周文策, . 转移性胰腺癌的联合免疫治疗研究进展 [J]. 实用医学杂志, 2023, 39(6): 655-659. |
[8] | 陈富坤 吕娟 邓智勇. 嵌合抗原受体基因修饰T细胞免疫疗法在肺癌治疗中的研究进展[J]. 实用医学杂志, 2023, 39(5): 538-543. |
[9] | 张贤兰,朱玉斐,曾云云,黄智昊,岑文昌,苏珊. 化疗联合免疫及重组人血管内皮抑制素治疗晚期非小细胞肺癌的有效性及安全性分析[J]. 实用医学杂志, 2023, 39(16): 2112-2115. |
[10] | 刘剑 李敏菁. 全身免疫炎症指数对非小细胞肺癌免疫检查点抑制剂疗效的预测价值 [J]. 实用医学杂志, 2022, 38(7): 904-908. |
[11] | 徐璐 黄栎有 王延花 温林春 .
PD-1抑制剂联合脑部放疗治疗驱动基因阴性非小细胞肺癌脑转移的疗效及安全性分析 [J]. 实用医学杂志, 2022, 38(24): 3100-3105. |
[12] | 张颖 吴月玲 . 宫颈癌的免疫治疗:精准医学的到来 [J]. 实用医学杂志, 2022, 38(15): 1856-1859. |
[13] | 何峻, 伍松柏, 吕爱莲, 戴瑶, 黄康, 方向, 吕建磊, 刘敏, 张权, 彭静. 老年脓毒症合并免疫抑制患者免疫调理治疗策略 [J]. 实用医学杂志, 2021, 37(6): 718-721. |
[14] | 李代龙 王雨珂 庞雅琪 许新华, .
晚期肝细胞癌免疫检查点抑制剂的临床研究进展
[J]. 实用医学杂志, 2021, 37(6): 821-826. |
[15] | 孙洁 陈欣.
嵌合抗原受体T细胞治疗的心脏毒性研究进展
[J]. 实用医学杂志, 2021, 37(6): 827-830. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||