实用医学杂志 ›› 2024, Vol. 40 ›› Issue (22): 3124-3129.doi: 10.3969/j.issn.1006-5725.2024.22.002
收稿日期:
2024-05-25
出版日期:
2024-11-25
发布日期:
2024-11-25
通讯作者:
马礼兵
E-mail:malibing1984@163.com
作者简介:
基金资助:
Received:
2024-05-25
Online:
2024-11-25
Published:
2024-11-25
Contact:
Libing. MA
E-mail:malibing1984@163.com
摘要:
呼出气分析技术是一类无创、无痛、安全、方便且高效的检测方法。它在疾病筛查、临床诊断、疾病严重程度评估、治疗方案制定以及疾病预后预测等方面具有广泛的应用前景。近年来该系列技术迅速发展,已成为呼吸系统疾病诊治管理的重要工具之一。该文旨在综述常见呼出气分析技术在气道慢性炎症性疾病和气道感染性疾病等呼吸系统疾病中的临床应用及研究进展。
中图分类号:
梁冬露,马礼兵. 呼出气分析技术在呼吸系统疾病中的应用及进展[J]. 实用医学杂志, 2024, 40(22): 3124-3129.
Donglu LIANG,Libing. MA. Application and progress of exhaled breath analysis technology in respiratory system diseases[J]. The Journal of Practical Medicine, 2024, 40(22): 3124-3129.
1 | GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990-2021: A systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2024, 403(10440):2100-2132. |
2 | 中国医药教育协会慢性气道疾病专业委员会, 中国哮喘联盟. 呼出气一氧化氮检测及其在气道疾病诊治中应用的中国专家共识[J]. 中华医学杂志, 2021,101(38):3092-3114. |
3 |
KREIT J W. Volume Capnography in the Intensive Care Unit:Potential Clinical Applications[J]. Ann Am Thorac Soc, 2019,16(4):409-420. doi:10.1513/annalsats.201807-502cme
doi: 10.1513/annalsats.201807-502cme |
4 |
GRASSIN-DELYLE S, ROQUENCOURT C, MOINE P, et al. Metabolomics of exhaled breath in critically ill COVID-19 patients:A pilot study[J]. EBioMedicine, 2021,63:103154. doi:10.1016/j.ebiom.2020.103154
doi: 10.1016/j.ebiom.2020.103154 |
5 |
RICCO M, ZANIBONI A, SATTA E, et al. Potential Use of Exhaled Breath Condensate for Diagnosis of SARS-CoV-2 Infections:A Systematic Review and Meta-Analysis[J]. Diagnostics (Basel), 2022,12(9):2245. doi:10.3390/diagnostics12092245
doi: 10.3390/diagnostics12092245 |
6 | 中华医学会呼吸病学分会哮喘学组. 支气管激发试验临床应用中国专家共识(2024版)[J]. 中华医学杂志, 2024,104(22):2031-2040. |
7 | 缪晔红, 沈莹莹, 魏源, 等. FeNO、外周血EOS计数及血清总IgE对支气管哮喘的联合诊断价值探讨[J]. 国际呼吸杂志, 2022,42(8):583-588. |
8 |
SONG W J, KIM H J, SHIM J S, et al. Diagnostic accuracy of fractional exhaled nitric oxide measurement in predicting cough-variant asthma and eosinophilic bronchitis in adults with chronic cough:A systematic review and meta-analysis[J]. J Allergy Clin Immunol, 2017,140(3):701-709. doi:10.1016/j.jaci.2016.11.037
doi: 10.1016/j.jaci.2016.11.037 |
9 | 张星慧, 常晓悦. IL-8与FeNO在不同炎症表型的咳嗽变异性哮喘患者中的水平及临床意义[J]. 国际呼吸杂志, 2020,40(20):1585-1591. |
10 | 梁桂菊, 陈碧, 朱洁晨, 等. 哮喘患者肺泡一氧化氮与小气道功能的相关性[J]. 实用医学杂志, 2022,38(6):767-772. |
11 |
ZENG G S, CHEN H, CHEN L C, et al. Clinical implications of concentration of alveolar nitric oxide in asthmatic and non-asthmatic subacute cough[J]. J Breath Res, 2021,16(1). doi:10.1088/1752-7163/ac3616 .
doi: 10.1088/1752-7163/ac3616 |
12 |
TURNER S, COTTON S, WOOD J, et al. Reducing asthma attacks in children using exhaled nitric oxide (RAACENO) as a biomarker to inform treatment strategy: A multicentre, parallel, randomised, controlled, phase 3 trial[J]. Lancet Respir Med, 2022,10(6):584-592. doi:10.1016/s2213-2600(21)00486-0
doi: 10.1016/s2213-2600(21)00486-0 |
13 |
FANG C, YANG L J, CHEN X J, et al. A clinical investigation into the usefulness of fractional exhaled nitric oxide in guiding glucocorticoid therapy in children with bronchial asthma[J]. J Physiol Pharmacol, 2022,73(4). doi:10.26402/jpp.2022.4.09 .
doi: 10.26402/jpp.2022.4.09 |
14 |
HANIBUCHI M, MITSUHASHI A, KAJIMOTO T, et al. Clinical significance of fractional exhaled nitric oxide and periostin as potential markers to assess therapeutic efficacy in patients with cough variant asthma[J]. Respir Investig, 2023,61(1):16-22. doi:10.1016/j.resinv.2022.10.006
doi: 10.1016/j.resinv.2022.10.006 |
15 |
IKWU I, NICOLAS L G, MEHARI A, et al. Fractional exhaled nitric oxide and mortality in asthma and chronic obstructive pulmonary disease in a national cohort aged 40 years and older[J]. Respir Med, 2022,198:106879. doi:10.1016/j.rmed.2022.106879
doi: 10.1016/j.rmed.2022.106879 |
16 |
SU K C, KO H K, HSIAO Y H, et al. Fractional Exhaled Nitric Oxide Guided-Therapy in Chronic Obstructive Pulmonary Disease:A Stratified, Randomized, Controlled Trial[J]. Arch Bronconeumol, 2022,58(8):601-610. doi:10.1016/j.arbres.2021.11.013
doi: 10.1016/j.arbres.2021.11.013 |
17 |
ZHANG C, ZHANG M, WANG Y, et al. Diagnostic value of fractional exhaled nitric oxide in differentiating the asthma-COPD overlap from COPD: A systematic review and meta-analysis[J]. Expert Rev Respir Med, 2022,16(6):679-687. doi:10.1080/17476348.2022.2011221
doi: 10.1080/17476348.2022.2011221 |
18 |
MONEDEIRO F, MONEDEIRO-MILANOWSKI M, RATIU I A, et al. Needle Trap Device-GC-MS for Characterization of Lung Diseases Based on Breath VOC Profiles[J]. Molecules, 2021,26(6):1789. doi:10.3390/molecules26061789
doi: 10.3390/molecules26061789 |
19 |
KIENHORST S, VAN AARLE M, JOBSIS Q, et al. The ADEM2 project: Early pathogenic mechanisms of preschool wheeze and a randomised controlled trial assessing the gain in health and cost-effectiveness by application of the breath test for the diagnosis of asthma in wheezing preschool children[J]. BMC Public Health, 2023,23(1):629. doi:10.1186/s12889-023-15465-6
doi: 10.1186/s12889-023-15465-6 |
20 |
SCHLEICH F N, ZANELLA D, STEFANUTO P H, et al. Exhaled Volatile Organic Compounds Are Able to Discriminate between Neutrophilic and Eosinophilic Asthma[J]. Am J Respir Crit Care Med, 2019,200(4):444-453. doi:10.1164/rccm.201811-2210oc
doi: 10.1164/rccm.201811-2210oc |
21 |
BRINKMAN P, WAGENER A H, HEKKING P P, et al. Identification and prospective stability of electronic nose (eNose)-derived inflammatory phenotypes in patients with severe asthma[J]. J Allergy Clin Immunol, 2019,143(5):1811-1820. doi:10.1016/j.jaci.2018.10.058
doi: 10.1016/j.jaci.2018.10.058 |
22 |
HOLZ O, WASCHKI B, WATZ H, et al. Breath volatile organic compounds and inflammatory markers in adult asthma patients:Negative results from the ALLIANCE cohort[J]. Eur Respir J, 2021,57(2):2002127. doi:10.1183/13993003.02127-2020
doi: 10.1183/13993003.02127-2020 |
23 |
PERTZOV B, RONEN M, ROSENGARTEN D, et al. Use of capnography for prediction of obstruction severity in non-intubated COPD and asthma patients[J]. Respir Res, 2021,22(1):154. doi:10.1186/s12931-021-01747-3
doi: 10.1186/s12931-021-01747-3 |
24 |
TALKER L, NEVILLE D, WIFFEN L, et al. Machine diagnosis of chronic obstructive pulmonary disease using a novel fast-response capnometer[J]. Respir Res, 2023,24(1):150. doi:10.1080/15412555.2024.2321379
doi: 10.1080/15412555.2024.2321379 |
25 |
SUN X, YANG W, GONG S, et al. Diagnostic value of volumetric capnography in patients with chronic cough variant asthma[J]. Clinics (Sao Paulo), 2020,75:e1662. doi:10.6061/clinics/2020/e1662
doi: 10.6061/clinics/2020/e1662 |
26 |
ABDULLAH A A, ZAHEDI F D, HUSAIN S, et al. Diagnostic Value and Clinical Application of Nasal Fractional Exhaled Nitric Oxide in Subjects with Allergic Rhinitis[J]. Am J Rhinol Allergy, 2023,37(3):307-312. doi:10.1177/19458924221145084
doi: 10.1177/19458924221145084 |
27 |
HACCURIA A, Van MUYLEM A, MALINOVSCHI A, et al. Small airways dysfunction: The link between allergic rhinitis and allergic asthma[J]. Eur Respir J, 2018,51(2):1701749. doi:10.1183/13993003.01749-2017
doi: 10.1183/13993003.01749-2017 |
28 |
DRAGONIERI S, QUARANTA V N, CARRATU P, et al. Exhaled breath profiling by electronic nose enabled discrimination of allergic rhinitis and extrinsic asthma[J]. Biomarkers, 2019, 24(1):70-75. doi:10.1080/1354750x.2018.1508307
doi: 10.1080/1354750x.2018.1508307 |
29 | GUEST C, DEWHIRST S Y, LINDSAY S W, et al. Using trained dogs and organic semi-conducting sensors to identify asymptomatic and mild SARS-CoV-2 infections: An observational study[J]. J Travel Med, 2022,29(3):taac043. |
30 |
SHARMA R, ZANG W, TABARTEHFARAHANI A, et al. Portable Breath-Based Volatile Organic Compound Monitoring for the Detection of COVID-19 During the Circulation of the SARS-CoV-2 Delta Variant and the Transition to the SARS-CoV-2 Omicron Variant[J]. JAMA Netw Open, 2023, 6(2):e230982. doi:10.1001/jamanetworkopen.2023.0982
doi: 10.1001/jamanetworkopen.2023.0982 |
31 |
MYERS R, RUSZKIEWICZ D M, MEISTER A, et al. Breath testing for SARS-CoV-2 infection[J]. EBioMedicine, 2023, 92:104584. doi:10.1016/j.ebiom.2023.104584
doi: 10.1016/j.ebiom.2023.104584 |
32 |
V R N, MOHAPATRA A K, V K U, et al. Post-COVID syndrome screening through breath analysis using electronic nose technology[J]. Anal Bioanal Chem, 2022,414(12):3617-3624. doi:10.1007/s00216-022-03990-z
doi: 10.1007/s00216-022-03990-z |
33 |
RYAN D J, TOOMEY S, MADDEN S F, et al. Use of exhaled breath condensate (EBC) in the diagnosis of SARS-COV-2 (COVID-19)[J]. Thorax, 2021,76(1):86-88. doi:10.1136/thoraxjnl-2020-215705
doi: 10.1136/thoraxjnl-2020-215705 |
34 |
BETANCOR D, VALVERDE-MONGUE M, GOMEZ-LOPEZ A, et al. Evaluation of Fractional Exhaled Nitric Oxide During SARS-CoV-2 Infection[J]. J Investig Allergol Clin Immunol, 2022, 32(4):301-303. doi:10.18176/jiaci.0762
doi: 10.18176/jiaci.0762 |
35 |
LIOR Y, YATZKAN N, BRAMI I, et al. Fractional exhaled Nitric Oxide (FeNO) level as a predictor of COVID-19 disease severity[J]. Nitric Oxide, 2022,124:68-73. doi:10.1016/j.niox.2022.05.002
doi: 10.1016/j.niox.2022.05.002 |
36 | KARAALI R, CAKIR A, BORA E S, et al. The Evaluation of End Tidal Carbon Dioxide Values in Intubated Patients with COVID-19[J]. Acta Biomed, 2022,93(1):e2022032. |
37 |
GRAF J, PEREZ R, LOPEZ R. Increased respiratory dead space could associate with coagulation activation and poor outcomes in COVID-19 ARDS[J]. J Crit Care, 2022,71:154095. doi:10.1016/j.jcrc.2022.154095
doi: 10.1016/j.jcrc.2022.154095 |
38 |
ZETOLA N M, MODONGO C, MATSIRI O, et al. Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples[J]. J Infect, 2017,74(4):367-376. doi:10.1016/j.jinf.2016.12.006
doi: 10.1016/j.jinf.2016.12.006 |
39 |
SAKTIAWATI A, PUTERA D D, SETYAWAN A, et al. Diagnosis of tuberculosis through breath test:A systematic review[J]. EBioMedicine, 2019,46:202-214. doi:10.1016/j.ebiom.2019.07.056
doi: 10.1016/j.ebiom.2019.07.056 |
40 |
CORONEL T R, IJDEMA D, GOMEZ C, et al. The electronic nose as a rule-out test for tuberculosis in an indigenous population[J]. J Intern Med, 2021,290(2):386-391. doi:10.1111/joim.13281
doi: 10.1111/joim.13281 |
41 |
LOPEZ J W, LOADER M I, SMITH D, et al. Exhaled Nitric Oxide is Not a Biomarker for Pulmonary Tuberculosis[J]. Am J Trop Med Hyg, 2018,98(6):1637-1639. doi:10.4269/ajtmh.17-0425
doi: 10.4269/ajtmh.17-0425 |
42 |
AHMED W M, FENN D, WHITE I R, et al. Microbial Volatiles as Diagnostic Biomarkers of Bacterial Lung Infection in Mechanically Ventilated Patients[J]. Clin Infect Dis, 2023, 76(6):1059-1066. doi:10.1093/cid/ciac859
doi: 10.1093/cid/ciac859 |
[1] | 王晴雯,张淑雅,熊维霖,胡晓磊,李紫薇,郭庆寅. 儿童过敏性紫癜口腔菌群及其代谢产物特征[J]. 实用医学杂志, 2024, 40(9): 1244-1250. |
[2] | 龙嗣博,陈燕,张鑫桐,尹颜军,杨丽梅,郑迈克,王潮虹,孙晴,晏君,施亦衡,时广利,赵艳,王桂荣. 新型冠状病毒感染者入院时血清降钙素原、白细胞介素-6和白细胞介素-8水平及其在患者预后中的意义[J]. 实用医学杂志, 2024, 40(4): 471-475. |
[3] | 李娜,白彝华,蒋红樱,张凤,李萌,杨娇. 长期维持性透析患者的衰弱现况及其影响因素[J]. 实用医学杂志, 2024, 40(3): 330-335. |
[4] | 丁紫琪,张倩. T细胞耗竭与呼吸系统疾病关系的研究进展[J]. 实用医学杂志, 2024, 40(13): 1895-1900. |
[5] | 王璐洁 罗纯 黄淑玲 林连升 张园 . 新冠病毒感染者前白蛋白对淋巴细胞的影响:焦虑和超敏C反应蛋白的中介作用 [J]. 实用医学杂志, 2023, 39(3): 273-277. |
[6] | 黄彬,卢凤坤,李小荣,汤展宏,胡军涛. 重型及危重型新型冠状病毒感染的早期预测因素分析[J]. 实用医学杂志, 2023, 39(21): 2736-2742. |
[7] | 何志捷, 李方义 周立新 汤展宏 钱克俭 寇秋野 谭杰文, 王庭槐, . 进行有创机械通气的成人危重型新型冠状病毒感染患者救治流程 [J]. 实用医学杂志, 2023, 39(11): 1325-1330. |
[8] | 雷榆 胡亚欣 余蕾 程明亮 程卓 丛硕 蒲茜 郑林 . 肝内胆汁淤积对小鼠回盲部胆汁酸谱及肠道菌群的影响 [J]. 实用医学杂志, 2023, 39(10): 1232-1236. |
[9] | 李荔 周嘉禾 李末娟 钟明琳 张小伟 许秋仪 梁莲云. 多囊卵巢综合征表观遗传学、代谢组学、肠道菌群新机制前沿展望 [J]. 实用医学杂志, 2022, 38(16): 1987-1992. |
[10] | 叶明君 戴勇 汤冬娥 李强 尹良红. 腹膜透析代谢组学研究进展 [J]. 实用医学杂志, 2022, 38(1): 1-6. |
[11] | 厉颖 李灿委 范孟然 刘卫红 高鹏飞..
酒精性肝病的代谢组学研究进展
[J]. 实用医学杂志, 2021, 37(7): 944-947. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||