1 |
ATTALLA K, FARKAS A M, ANASTOS H, et al. TIM-3 and TIGIT are possible immune checkpoint targets in patients with bladder cancer [J]. Urol Oncol, 2022, 40(9): 403-406. doi:10.1016/j.urolonc.2020.06.007
doi: 10.1016/j.urolonc.2020.06.007
|
2 |
WEI Y Y, FAN J, SHAN M X, et al. TIGIT marks exhausted T cells and serves as a target for immune restoration in patients with chronic HBV infection [J]. Am J Transl Res, 2022, 14(2): 942-954.
|
3 |
PATEL A J, MIDDLETON G W. TIGIT-based immunotherapeutics in lung cancer [J]. Immunother Adv, 2023, 3(1): ltad009. doi:10.1093/immadv/ltad009
doi: 10.1093/immadv/ltad009
|
4 |
CHIU D K, YUEN V W, CHEU J W, et al. Hepatocellular Carcinoma Cells Up-regulate PVRL1, Stabilizing PVR and Inhibiting the Cytotoxic T-Cell Response via TIGIT to Mediate Tumor Resistance to PD1 Inhibitors in Mice [J]. Gastroenterology, 2020, 159(2): 609-623. doi:10.1053/j.gastro.2020.03.074
doi: 10.1053/j.gastro.2020.03.074
|
5 |
LEE J B, HA S J, KIM H R. Clinical Insights Into Novel Immune Checkpoint Inhibitors [J]. Front Pharmacol, 2021, 12:681320. doi:10.3389/fphar.2021.681320
doi: 10.3389/fphar.2021.681320
|
6 |
KAITO Y, HIRANO M, FUTAMI M, et al. CD155 and CD112 as possible therapeutic targets of FLT3 inhibitors for acute myeloid leukemia [J]. Oncol Lett, 2022, 23(2): 51. doi:10.3892/ol.2021.13169
doi: 10.3892/ol.2021.13169
|
7 |
MATSUO T, IGUCHI-MANAKA A, SHIBUYA A, et al. CD155 mutation (Ala67Thr) increases the binding affinity for and the signaling via an inhibitory immunoreceptor TIGIT [J]. Cancer Sci, 2022, 113(11): 4001-4004. doi:10.1111/cas.15526
doi: 10.1111/cas.15526
|
8 |
YOSHIKAWA K, ISHIDA M, YANAI H, et al. Immunohistochemical analysis of CD155 expression in triple-negative breast cancer patients [J]. PLoS One, 2021, 16(6): e0253176. doi:10.1371/journal.pone.0253176
doi: 10.1371/journal.pone.0253176
|
9 |
ZHAN M, ZHANG Z, ZHAO X, et al. CD155 in tumor progression and targeted therapy [J]. Cancer Lett, 2022, 545:215830. doi:10.1016/j.canlet.2022.215830
doi: 10.1016/j.canlet.2022.215830
|
10 |
HARJUNPÄÄ H, GUILLEREY C. TIGIT as an emerging immune checkpoint [J]. Clin Exp Immunol, 2020, 200(2): 108-119. doi:10.1111/cei.13407
doi: 10.1111/cei.13407
|
11 |
O'DONNELL J S, MADORE J, LI X Y, et al. Tumor intrinsic and extrinsic immune functions of CD155 [J]. Semin Cancer Biol, 2020, 65:189-196. doi:10.1016/j.semcancer.2019.11.013
doi: 10.1016/j.semcancer.2019.11.013
|
12 |
马莉, 刘红刚. 脊髓灰质炎病毒受体的生物学特性及其在肿瘤免疫中的研究进展 [J]. 中日友好医院学报, 2021, 35(6): 350-352. doi:10.3969/j.issn.1001-0025.2021.06.008
doi: 10.3969/j.issn.1001-0025.2021.06.008
|
13 |
SANCHEZ-CORREA B, VALHONDO I, HASSOUNEH F, et al. DNAM-1 and the TIGIT/PVRIG/TACTILE Axis: Novel Immune Checkpoints for Natural Killer Cell-Based Cancer Immunotherapy [J]. Cancers (Basel), 2019, 11(6): 877. doi:10.3390/cancers11060877
doi: 10.3390/cancers11060877
|
14 |
ZENG T, CAO Y, JIN T, et al. The CD112R/CD112 axis: a breakthrough in cancer immunotherapy [J]. J Exp Clin Cancer Res, 2021, 40(1): 285. doi:10.1186/s13046-021-02053-y
doi: 10.1186/s13046-021-02053-y
|
15 |
FRITSCH E F, BURKHARDT U E, HACOHEN N, et al. Personal Neoantigen Cancer Vaccines: A Road Not Fully Paved [J]. Cancer Immunol Res, 2020, 8(12): 1465-1469. doi:10.1158/2326-6066.cir-20-0526
doi: 10.1158/2326-6066.cir-20-0526
|
16 |
RECHES A, OPHIR Y, STEIN N, et al. Nectin4 is a novel TIGIT ligand which combines checkpoint inhibition and tumor specificity [J]. J Immunother Cancer, 2020, 8(1): e000266. doi:10.1136/jitc-2019-000266
doi: 10.1136/jitc-2019-000266
|
17 |
LIU L, YOU X, HAN S, et al. CD155/TIGIT, a novel immune checkpoint in human cancers (Review) [J]. Oncol Rep, 2021, 45(3): 835-845. doi:10.3892/or.2021.7943
doi: 10.3892/or.2021.7943
|
18 |
LOZANO E, MENA M P, DÍAZ T, et al. Nectin-2 Expression on Malignant Plasma Cells Is Associated with Better Response to TIGIT Blockade in Multiple Myeloma [J]. Clin Cancer Res, 2020, 26(17): 4688-4698. doi:10.1158/1078-0432.ccr-19-3673
doi: 10.1158/1078-0432.ccr-19-3673
|
19 |
SOLOMON B L, GARRIDO-LAGUNA I. TIGIT: a novel immunotherapy target moving from bench to bedside [J]. Cancer Immunol Immunother, 2018, 67(11): 1659-1667. doi:10.1007/s00262-018-2246-5
doi: 10.1007/s00262-018-2246-5
|
20 |
王尧, 巴宏军, 柳子川, 等. 膀胱癌免疫基因组学分型及其临床意义 [J]. 实用医学杂志, 2020, 36(11): 1452-1456. doi:10.3969/j.issn.1006-5725.2020.11.009
doi: 10.3969/j.issn.1006-5725.2020.11.009
|
21 |
LIN F, HU X, ZHANG Y, et al. Upregulated TIGIT(+) and Helios(+) regulatory T cell levels in bronchoalveolar lavage fluid of NSCLC patients [J]. Mol Immunol, 2022, 147: 40-49. doi:10.1016/j.molimm.2022.04.005
doi: 10.1016/j.molimm.2022.04.005
|
22 |
FOURCADE J, SUN Z, CHAUVIN J M, et al. CD226 opposes TIGIT to disrupt Tregs in melanoma [J]. JCI Insight, 2018, 3(14): e121157. doi:10.1172/jci.insight.121157
doi: 10.1172/jci.insight.121157
|
23 |
MA X, ZHU H, CHENG L, et al. Targeting FGL2 in glioma immunosuppression and malignant progression [J]. Front Oncol, 2022, 12:1004700. doi:10.3389/fonc.2022.1004700
doi: 10.3389/fonc.2022.1004700
|
24 |
FATHI M, PUSTOKHINA I, KUZNETSOV S V, et al. T-cell immunoglobulin and ITIM domain, as a potential immune checkpoint target for immunotherapy of colorectal cancer [J]. IUBMB Life, 2021, 73(5): 726-738. doi:10.1002/iub.2461
doi: 10.1002/iub.2461
|
25 |
JIANG V C, HAO D, JAIN P, et al. TIGIT is the central player in T-cell suppression associated with CAR T-cell relapse in mantle cell lymphoma [J]. Mol Cancer, 2022, 21(1): 185. doi:10.1186/s12943-022-01655-0
doi: 10.1186/s12943-022-01655-0
|
26 |
GE Z, PEPPELENBOSCH M P, SPRENGERS D, et al. TIGIT, the Next Step Towards Successful Combination Immune Checkpoint Therapy in Cancer [J]. Front Immunol, 2021, 12: 699895. doi:10.3389/fimmu.2021.699895
doi: 10.3389/fimmu.2021.699895
|
27 |
GUR C, IBRAHIM Y, ISAACSON B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack [J]. Immunity, 2015, 42(2): 344-355. doi:10.1016/j.immuni.2015.01.010
doi: 10.1016/j.immuni.2015.01.010
|
28 |
HONG J, GUO F, LU S Y, et al. F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer [J]. Gut, 2021, 70(11): 2123-2137. doi:10.1136/gutjnl-2020-322780
doi: 10.1136/gutjnl-2020-322780
|
29 |
SHEN X, FU W, WEI Y, et al. TIGIT-Fc Promotes Antitumor Immunity [J]. Cancer Immunol Res, 2021, 9(9): 1088-1097. doi:10.1158/2326-6066.cir-20-0986
doi: 10.1158/2326-6066.cir-20-0986
|
30 |
RELIGIONI U, CZERW A, DEPTALA A. Assessment of Pain, Acceptance of Illness, Adaptation to Life, and Strategies of Coping With the Disease, in Patients With Bladder Cancer [J]. In Vivo, 2021, 35(2): 1157-1161. doi:10.21873/invivo.12363
doi: 10.21873/invivo.12363
|
31 |
WU K, ZENG J, SHI X, et al. Targeting TIGIT Inhibits Bladder Cancer Metastasis Through Suppressing IL-32 [J]. Front Pharmacol, 2021, 12:801493. doi:10.3389/fphar.2021.801493
doi: 10.3389/fphar.2021.801493
|
32 |
LIU Z, ZHOU Q, WANG Z, et al. Intratumoral TIGIT(+) CD8(+) T-cell infiltration determines poor prognosis and immune evasion in patients with muscle-invasive bladder cancer [J]. J Immunother Cancer, 2020, 8(2): e000978. doi:10.1136/jitc-2020-000978
doi: 10.1136/jitc-2020-000978
|
33 |
AUDENET F, FARKAS A M, ANASTOS H, et al. Immune phenotype of peripheral blood mononuclear cells in patients with high-risk non-muscle invasive bladder cancer [J]. World J Urol, 2018, 36(11): 1741-1748. doi:10.1007/s00345-018-2359-7
doi: 10.1007/s00345-018-2359-7
|
34 |
WU X, LV D, CAI C, et al. A TP53-Associated Immune Prognostic Signature for the Prediction of Overall Survival and Therapeutic Responses in Muscle-Invasive Bladder Cancer [J]. Front Immunol, 2020, 11:590618. doi:10.3389/fimmu.2020.590618
doi: 10.3389/fimmu.2020.590618
|
35 |
LI H, LU H, CUI W, et al. A TP53-based immune prognostic model for muscle-invasive bladder cancer [J]. Aging (Albany NY), 2020, 13(2): 1929-1946. doi:10.18632/aging.202150
doi: 10.18632/aging.202150
|
36 |
LIU Z, ZENG H, JIN K, et al. TIGIT and PD-1 expression atlas predicts response to adjuvant chemotherapy and PD-L1 blockade in muscle-invasive bladder cancer [J]. Br J Cancer, 2022, 126(9): 1310-1317. doi:10.1038/s41416-022-01703-y
doi: 10.1038/s41416-022-01703-y
|
37 |
HAN H S, JEONG S, KIM H, et al. TOX-expressing terminally exhausted tumor-infiltrating CD8(+) T cells are reinvigorated by co-blockade of PD-1 and TIGIT in bladder cancer [J]. Cancer Lett, 2021, 499:137-147. doi:10.1016/j.canlet.2020.11.035
doi: 10.1016/j.canlet.2020.11.035
|
38 |
叶强, 陈小燕. 免疫检查点抑制剂的内分泌毒性及临床应对策略 [J]. 实用医学杂志, 2021, 37(11): 1382-1386. doi:10.3969/j.issn.1006-5725.2021.11.002
doi: 10.3969/j.issn.1006-5725.2021.11.002
|
40 |
ROUSSEAU A, PARISI C, BARLESI F. Anti-TIGIT therapies for solid tumors: a systematic review [J]. ESMO Open, 2023, 8(2): 101184. doi:10.1016/j.annonc.2021.11.002
doi: 10.1016/j.annonc.2021.11.002
|
41 |
CHEN S, ZHANG N, SHAO J, et al. Multi-omics Perspective on the Tumor Microenvironment based on PD-L1 and CD8 T-Cell Infiltration in Urothelial Cancer [J]. J Cancer, 2019, 10(3): 697-707. doi:10.7150/jca.28494
doi: 10.7150/jca.28494
|