实用医学杂志 ›› 2024, Vol. 40 ›› Issue (3): 428-431.doi: 10.3969/j.issn.1006-5725.2024.03.026
收稿日期:
2023-09-19
出版日期:
2024-02-10
发布日期:
2024-02-22
通讯作者:
史彦芳
E-mail:Yakamoz47@126.com
基金资助:
Jiang SHAO,Lin LI,Yansong GUO,Chengyuan SUN,Xichao WEN,Kebin ZHENG,Yanfang SHI()
Received:
2023-09-19
Online:
2024-02-10
Published:
2024-02-22
Contact:
Yanfang SHI
E-mail:Yakamoz47@126.com
摘要:
胶质瘤是最常见的原发性中枢神经系统肿瘤,主要来源于神经胶质细胞,具有侵袭性强、易复发、预后差的特点。胶质母细胞瘤是恶性程度最高的高级别胶质瘤,临床治疗方法为手术切除为主,辅以放化疗及电场治疗等综合治疗,但治疗效果并不令人满意。CD73是一种与腺苷代谢相关的新型免疫检查点,近年来随着肿瘤免疫治疗领域的迅速发展,发现CD73可以通过抑制抗肿瘤免疫反应和促进血管生成来促进肿瘤进展。本文系统综述了CD73的作用机制,并讨论其在胶质瘤中的生物学作用及应用,旨在为胶质瘤患者的治疗提供潜在的治疗方案。
中图分类号:
邵将,李琳,郭岩松,孙程圆,温稀超,郑克彬,史彦芳. CD73/NT5E在胶质母细胞瘤中的研究进展[J]. 实用医学杂志, 2024, 40(3): 428-431.
Jiang SHAO,Lin LI,Yansong GUO,Chengyuan SUN,Xichao WEN,Kebin ZHENG,Yanfang SHI. Research progress of CD73/NT5E in glioblastoma[J]. The Journal of Practical Medicine, 2024, 40(3): 428-431.
1 |
PARK J W. Metabolic Rewiring in Adult-Type Diffuse Gliomas[J]. Int J Mol Sci, 2023,24(8): 7348. doi:10.3390/ijms24087348
doi: 10.3390/ijms24087348 |
2 |
曾昭穆,牛双,姬焱鑫,等. 长链非编码RNA多角度调控胶质瘤化疗耐药[J]. 实用医学杂志,2022,38(16):1998-2001. doi:10.3969/j.issn.1006-5725.2022.16.003
doi: 10.3969/j.issn.1006-5725.2022.16.003 |
3 |
李琳, 刘超, 邵将, 等. 肿瘤电场治疗在神经胶质瘤治疗中的研究进展[J]. 实用医学杂志, 2022,38(22): 2763-2767. doi:10.3969/j.issn.1006-5725.2022.22.001
doi: 10.3969/j.issn.1006-5725.2022.22.001 |
4 |
VENKATESHAPPA C, NARAYANAN K, KOTHANDARAMAN P, et al. Novel, potent and orally bioavailable small molecule CD73 inhibitors for cancer immunotherapy[J]. Cancer Res, 2021,81(): 1713. doi:10.1158/1538-7445.am2021-1713
doi: 10.1158/1538-7445.am2021-1713 |
5 |
KEPP O, BEZU L, YAMAZAKI T, et al. ATP and cancer immunosurveillance[J]. EMBO J, 2021,40(13): e108130. doi:10.15252/embj.2021108130
doi: 10.15252/embj.2021108130 |
6 |
SUWARA J, RADZIKOWSKA-CIECIURA E, CHWOROS A, et al. The ATP-dependent Pathways and Human Diseases[J]. Curr Med Chem, 2023,30(11): 1232-1255. doi:10.2174/0929867329666220322104552
doi: 10.2174/0929867329666220322104552 |
7 |
XIA C, YIN S, TO K, et al. CD39/CD73/A2AR pathway and cancer immunotherapy[J]. Mol Cancer, 2023,22(1): 44. doi:10.1186/s12943-023-01733-x
doi: 10.1186/s12943-023-01733-x |
8 |
TAKAMATSU D, KIYOZAWA D, KOHASHI K, et al. Prognostic impact of CD73/adenosine 2A receptor (A2AR) in renal cell carcinoma and immune microenvironmental status with sarcomatoid changes and rhabdoid features[J]. Pathol Res Pract, 2023,244: 154423. doi:10.1016/j.prp.2023.154423
doi: 10.1016/j.prp.2023.154423 |
9 |
DA M, CHEN L, ENK A, et al. The Multifaceted Actions of CD73 During Development and Suppressive Actions of Regulatory T Cells[J]. Front Immunol, 2022,13: 914799. doi:10.3389/fimmu.2022.914799
doi: 10.3389/fimmu.2022.914799 |
10 |
CHEN S, WAINWRIGHT D A, WU J D, et al. CD73: an emerging checkpoint for cancer immunotherapy[J]. Immunotherapy, 2019,11(11): 983-997. doi:10.2217/imt-2018-0200
doi: 10.2217/imt-2018-0200 |
11 |
SUN B Y, YANG Z F, WANG Z T, et al. Integrative analyses identify CD73 as a prognostic biomarker and immunotherapeutic target in intrahepatic cholangiocarcinoma[J]. World J Surg Oncol, 2023,21(1): 90. doi:10.1186/s12957-023-02970-6
doi: 10.1186/s12957-023-02970-6 |
12 |
BENSUSSEN A, SANTANA M A, RODRÍGUEZ-JORGE O. Metabolic alterations impair differentiation and effector functions of CD8+ T cells[J]. Front Immunol, 2022,13: 945980. doi:10.3389/fimmu.2022.945980
doi: 10.3389/fimmu.2022.945980 |
13 |
BYSTROM J, TAHER T E, HENSON S M, et al. Metabolic requirements of Th17 cells and of B cells: Regulation and defects in health and in inflammatory diseases[J]. Front Immunol, 2022,13: 990794. doi:10.3389/fimmu.2022.990794
doi: 10.3389/fimmu.2022.990794 |
14 |
MAHESHWARI S, DWYER L J, SÎRBULESCU R F. Inflammation and immunomodulation in central nervous system injury - B cells as a novel therapeutic opportunity[J]. Neurobiol Dis, 2023,180: 106077. doi:10.1016/j.nbd.2023.106077
doi: 10.1016/j.nbd.2023.106077 |
15 |
JANSEN K, CEVHERTAS L, MA S, et al. Regulatory B cells, A to Z[J]. Allergy, 2021,76(9): 2699-2715. doi:10.1111/all.14763
doi: 10.1111/all.14763 |
16 |
GAO Z, WANG L, SONG Z, et al. Intratumoral CD73: An immune checkpoint shaping an inhibitory tumor microenvironment and implicating poor prognosis in Chinese melanoma cohorts[J]. Front Immunol, 2022,13: 954039. doi:10.3389/fimmu.2022.954039
doi: 10.3389/fimmu.2022.954039 |
17 |
BRAUNECK F, SEUBERT E, WELLBROCK J, et al. Combined Blockade of TIGIT and CD39 or A2AR Enhances NK-92 Cell-Mediated Cytotoxicity in AML[J]. Int J Mol Sci, 2021,22(23):12919. doi:10.3390/ijms222312919
doi: 10.3390/ijms222312919 |
18 |
SONIGO G, BOZONNAT A, DUMONT M, et al. Involvement of the CD39/CD73/adenosine pathway in T-cell proliferation and NK cell-mediated antibody-dependent cell cytotoxicity in Sézary syndrome[J]. Blood, 2022,139(17): 2712-2716. doi:10.1182/blood.2021014782
doi: 10.1182/blood.2021014782 |
19 |
KAMAI T, KIJIMA T, TSUZUKI T, et al. Increased expression of adenosine 2A receptors in metastatic renal cell carcinoma is associated with poorer response to anti-vascular endothelial growth factor agents and anti-PD-1/Anti-CTLA4 antibodies and shorter survival[J]. Cancer Immunol Immunother, 2021,70(7): 2009-2021. doi:10.1007/s00262-020-02843-x
doi: 10.1007/s00262-020-02843-x |
20 |
SUN P, ZHENG X, LI X. The Effects of CD73 on Gastrointestinal Cancer Progression and Treatment[J]. J Oncol, 2022,2022: 4330329. doi:10.1155/2022/4330329
doi: 10.1155/2022/4330329 |
21 |
EBERHARDT N, BERGERO G, MAZZOCCO M Y, et al. Purinergic modulation of the immune response to infections[J]. Purinergic Signal, 2022,18(1): 93-113. doi:10.1007/s11302-021-09838-y
doi: 10.1007/s11302-021-09838-y |
22 |
ELSAGHIR A, EL-SABAA E, AHMED A K, et al. The Role of Cluster of Differentiation 39 (CD39) and Purinergic Signaling Pathway in Viral Infections[J]. Pathogens, 2023,12(2):279. doi:10.3390/pathogens12020279
doi: 10.3390/pathogens12020279 |
23 |
CASEY M, SEGAWA K, LAW S C, et al. Inhibition of CD39 unleashes macrophage antibody-dependent cellular phagocytosis against B-cell lymphoma[J]. Leukemia, 2023,37(2): 379-387. doi:10.1038/s41375-022-01794-9
doi: 10.1038/s41375-022-01794-9 |
24 |
IZAWA M, TANAKA N, MURAKAMI T, et al. Single-Cell Phenotyping of CD73 Expression Reveals the Diversity of the Tumor Immune Microenvironment and Reflects the Prognosis of Bladder Cancer[J]. Lab Invest, 2023,103(4): 100040. doi:10.1016/j.labinv.2022.100040
doi: 10.1016/j.labinv.2022.100040 |
25 |
BAJRACHARYA B, SHRESTHA D, TALVANI A, et al. The Ecto-5'nucleotidase/CD73 Mediates Leishmania amazonensis Survival in Macrophages[J]. Biomed Res Int, 2022,2022: 9928362. doi:10.1155/2022/9928362
doi: 10.1155/2022/9928362 |
26 |
ANDERSEN J K, MILETIC H, HOSSAIN J A. Tumor-Associated Macrophages in Gliomas-Basic Insights and Treatment Opportunities[J]. Cancers (Basel), 2022,14(5):1319. doi:10.3390/cancers14051319
doi: 10.3390/cancers14051319 |
27 |
WEI Q, ZHANG L, ZHAO N, et al. Immunosuppressive adenosine-targeted biomaterials for emerging cancer immunotherapy[J]. Front Immunol, 2022,13: 1012927. doi:10.3389/fimmu.2022.1012927
doi: 10.3389/fimmu.2022.1012927 |
28 |
NIE J, WANG D, LI M. The crosstalk between autophagy and myeloid-derived suppressor cell responses in cancer[J]. Clin Transl Oncol, 2023,25(10): 2832-2840. doi:10.1007/s12094-023-03160-2
doi: 10.1007/s12094-023-03160-2 |
29 |
KOWASH R R, AKBAY E A. Tumor intrinsic and extrinsic functions of CD73 and the adenosine pathway in lung cancer[J]. Front Immunol, 2023,14: 1130358. doi:10.3389/fimmu.2023.1130358
doi: 10.3389/fimmu.2023.1130358 |
30 |
LI L, WANG L, LI J, et al. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer[J]. Cancer Res, 2018,78(7): 1779-1791. doi:10.1158/0008-5472.can-17-2460
doi: 10.1158/0008-5472.can-17-2460 |
31 |
KIM H M, KANG M J, SONG S O. Metformin and Cervical Cancer Risk in Patients with Newly Diagnosed Type 2 Diabetes: A Population-Based Study in Korea[J]. Endocrinol Metab (Seoul), 2022,37(6): 929-937. doi:10.3803/enm.2022.1613
doi: 10.3803/enm.2022.1613 |
32 |
WANG M, JIA J, CUI Y, et al. CD73-positive extracellular vesicles promote glioblastoma immunosuppression by inhibiting T-cell clonal expansion[J]. Cell Death Dis, 2021,12(11): 1065. doi:10.1038/s41419-021-04359-3
doi: 10.1038/s41419-021-04359-3 |
33 |
AZAMBUJA J H, GELSLEICHTER N E, BECKENKAMP L R, et al. CD73 Downregulation Decreases In Vitro and In Vivo Glioblastoma Growth[J]. Mol Neurobiol, 2019,56(5): 3260-3279. doi:10.1007/s12035-018-1240-4
doi: 10.1007/s12035-018-1240-4 |
34 |
GELSLEICHTER N E, AZAMBUJA J H, RUBENICH D S, et al. CD73 in glioblastoma: Where are we now and what are the future directions?[J]. Immunol Lett, 2023,256-257: 20-27. doi:10.1016/j.imlet.2023.03.005
doi: 10.1016/j.imlet.2023.03.005 |
35 |
AZAMBUJA J H, SCHUH R S, MICHELS L R, et al. Blockade of CD73 delays glioblastoma growth by modulating the immune environment[J]. Cancer Immunol Immunother, 2020,69(9): 1801-1812. doi:10.1007/s00262-020-02569-w
doi: 10.1007/s00262-020-02569-w |
36 |
TSIAMPALI J, NEUMANN S, GIESEN B, et al. Enzymatic activity of CD73 modulates invasion of gliomas via epithelial-mesenchymal transition-like reprogramming[J]. Pharmaceuticals (Basel), 2020,13(11): 378. doi:10.3390/ph13110378
doi: 10.3390/ph13110378 |
37 |
ZHANG S, LI B, TANG L, et al. Disruption of CD73-Derived and Equilibrative Nucleoside Transporter 1-Mediated Adenosine Signaling Exacerbates Oxygen-Induced Retinopathy[J]. Am J Pathol, 2022,192(11): 1633-1646. doi:10.1016/j.ajpath.2022.07.014
doi: 10.1016/j.ajpath.2022.07.014 |
38 |
YAN A, JOACHIMS M L, THOMPSON L F, et al. CD73 promotes glioblastoma pathogenesis and enhances its chemoresistance via A2B adenosine receptor signaling[J]. J Neurosci, 2019,39(22): 4387-4402. doi:10.1523/jneurosci.1118-18.2019
doi: 10.1523/jneurosci.1118-18.2019 |
39 |
GOSWAMI S, WALLE T, CORNISH A E, et al. Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma[J]. Nat Med, 2020,26(1): 39-46. doi:10.1038/s41591-019-0694-x
doi: 10.1038/s41591-019-0694-x |
40 |
AZAMBUJA J H, SCHUH R S, MICHELS L R, et al. CD73 as a target to improve temozolomide chemotherapy effect in glioblastoma preclinical model[J]. Cancer Chemother Pharmacol, 2020,85(6): 1177-1182. doi:10.1007/s00280-020-04077-1
doi: 10.1007/s00280-020-04077-1 |
41 |
SAHA D, MARTUZA R L, RABKIN S D. Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade[J]. Cancer Cell, 2017,32(2): 253-267. doi:10.1016/j.ccell.2017.07.006
doi: 10.1016/j.ccell.2017.07.006 |
42 |
LI L, TIAN Y. The role of metabolic reprogramming of tumor-associated macrophages in shaping the immunosuppressive tumor microenvironment[J]. Biomed Pharmacother, 2023,161: 114504. doi:10.1016/j.biopha.2023.114504
doi: 10.1016/j.biopha.2023.114504 |
[1] | 丁宇轩,郭沥泞,沈佳怡,王丽君. 放疗联合PD-1抑制剂及酪氨酸激酶抑制剂治疗MSS型结直肠癌肝转移疗效及安全性[J]. 实用医学杂志, 2024, 40(9): 1293-1297. |
[2] | 孟肖娜,孙旭,刘怀民. 免疫检查点抑制剂相关结肠炎的研究进展[J]. 实用医学杂志, 2024, 40(9): 1314-1319. |
[3] | 张雨峤,梅伟健. 免疫检查点抑制剂治疗实体瘤的标志性成果[J]. 实用医学杂志, 2024, 40(2): 272-277. |
[4] | 孙昭晨,蒋君妍,陈一天. CAR-T细胞在结直肠癌治疗方面的研究进展[J]. 实用医学杂志, 2024, 40(18): 2640-2646. |
[5] | 袁胜芳,王布,项保利,赵建清,沈晶晶,张志华. 外周血循环肿瘤DNA预测晚期非小细胞肺癌免疫治疗疗效及预后价值[J]. 实用医学杂志, 2024, 40(15): 2110-2115. |
[6] | 丁紫琪,张倩. T细胞耗竭与呼吸系统疾病关系的研究进展[J]. 实用医学杂志, 2024, 40(13): 1895-1900. |
[7] | 李柳,郑庆厚,王宇,王乐,陈勤聪,王硕. 腺苷注射液在紫杉醇释放冠脉球囊导管扩张术中的应用价值[J]. 实用医学杂志, 2024, 40(12): 1712-1718. |
[8] | 张娅威,施鸿金,付什,王剑松,王海峰. TIGIT的生物学作用及其在膀胱癌中应用的研究进展[J]. 实用医学杂志, 2024, 40(12): 1762-1766. |
[9] | 周慧男,钦可为,周丽君. 免疫检查点LAG-3及其靶向药物研究现状和临床应用进展[J]. 实用医学杂志, 2024, 40(11): 1607-1612. |
[10] | 文习之,张晓实. 黑色素瘤个体化治疗策略:基于新抗原的特异性免疫治疗[J]. 实用医学杂志, 2024, 40(10): 1331-1337. |
[11] | 梁丹,易颖,黄为福,农先胜. 多靶点小分子酪氨酸激酶抑制剂联合免疫检查点抑制剂治疗标准治疗方案失败后晚期实体瘤患者的效果[J]. 实用医学杂志, 2024, 40(1): 102-107. |
[12] | 吴凯怡 吕学东 何海艳 陈金亮 . 冷冻消融联合免疫治疗在非小细胞肺癌治疗中的应用进展 [J]. 实用医学杂志, 2023, 39(8): 1058-1062. |
[13] | 张习杰 李昕 周文策, . 转移性胰腺癌的联合免疫治疗研究进展 [J]. 实用医学杂志, 2023, 39(6): 655-659. |
[14] | 陈富坤 吕娟 邓智勇. 嵌合抗原受体基因修饰T细胞免疫疗法在肺癌治疗中的研究进展[J]. 实用医学杂志, 2023, 39(5): 538-543. |
[15] | 李庆贵 陈康 郭召 骞立刚 . 汉黄芩素调节AMPK/SIRT1信号通路对骨质疏松大鼠骨折愈合的影响 [J]. 实用医学杂志, 2023, 39(4): 410-416. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||