1 |
STAMELLOU E, SEIKRIT C, TANG S C W, et al. IgA nephropathy[J]. Nat Rev Dis Primers, 2023, 9(1): 67. doi:10.1038/s41572-023-00476-9
doi: 10.1038/s41572-023-00476-9
|
2 |
CHEUNG C K, ALEXANDER S, REICH H N, et al. The pathogenesis of IgA nephropathy and implications for treatment[J]. Nat Rev Nephrol, 2025, 21(1): 9-23. doi:10.1038/s41581-024-00885-3
doi: 10.1038/s41581-024-00885-3
|
3 |
涂宇豪,郭志良,萨如拉,等. 703例次移植肾穿刺活组织检查的病理诊断分析[J]. 器官移植, 2024,15(5):799-804.
|
4 |
SCHIMPF J, KRONBICHLER A, WINDPESSL M, et al. Diagnosis and Treatment of IgA Nephropathy[J]. Wien Klin Wochenschr, 2023, 135(): 621-627. doi:10.1007/s00508-023-02257-6
doi: 10.1007/s00508-023-02257-6
|
5 |
GENTILE M, SANCHEZ-RUSSO L, RIELLA L V, et al. Immune abnormalities in IgA nephropathy[J]. Clin Kidney J, 2023, 16(7): 1059-1070. doi:10.1093/ckj/sfad025
doi: 10.1093/ckj/sfad025
|
6 |
GHARAVI A G, MOLDOVEANU Z, WYATT R J, et al. Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy[J]. J Am Soc Nephrol, 2008, 19(5): 1008-1014. doi:10.1681/asn.2007091052
doi: 10.1681/asn.2007091052
|
7 |
LECHNER S M, PAPISTA C, CHEMOUNY J M, et al. Role of IgA receptors in the pathogenesis of IgA nephropathy[J]. J Nephrol, 2016, 29(1):5-11. doi:10.1007/s40620-015-0246-5
doi: 10.1007/s40620-015-0246-5
|
8 |
SMITH D A, REDMAN J E, FRASER D J, et al. Identification and detection of microRNA kidney disease biomarkers in liquid biopsies[J]. Curr Opin Nephrol Hypertens, 2023, 32(6): 515-521. doi:10.1097/mnh.0000000000000927
doi: 10.1097/mnh.0000000000000927
|
9 |
SERINO G, SALLUSTIO F, COX S N, et al. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy[J]. J Am Soc Nephrol, 2012, 23(5): 814-824. doi:10.1681/asn.2011060567
doi: 10.1681/asn.2011060567
|
10 |
SERINO G, SALLUSTIO F, CURCI C, et al. Role of let-7b in the regulation of N-acetylgalactosaminyltransferase 2 in IgA nephropathy[J]. Nephrol Dial Transplant, 2015, 30(7): 1132-1139. doi:10.1093/ndt/gfv032
doi: 10.1093/ndt/gfv032
|
11 |
SERINO G, PESCE F, SALLUSTIO F, et al. In a retrospective international study, circulating miR-148b and let-7b were found to be serum markers for detecting primary IgA nephropathy[J]. Kidney Int, 2016, 89(3): 683-692. doi:10.1038/ki.2015.333
doi: 10.1038/ki.2015.333
|
12 |
SUZUKI H, ALLEGRI L, SUZUKI Y, et al. Galactose-Deficient IgA1 as a Candidate Urinary Polypeptide Marker of IgA Nephropathy?[J]. Dis Markers, 2016, 2016: 7806438. doi:10.1155/2016/7806438
doi: 10.1155/2016/7806438
|
13 |
SZETO C C, WANG G, NG J K C, et al. Urinary miRNA profile for the diagnosis of IgA nephropathy[J]. BMC Nephrol, 2019, 20(1): 77. doi:10.1186/s12882-019-1267-4
doi: 10.1186/s12882-019-1267-4
|
14 |
LI S, HAO H, LI R, et al. Urinary Exosomal MicroRNAs as New Noninvasive Biomarkers of IgA Nephropathy[J]. Tohoku J Exp Med, 2022, 256(3): 215-223. doi:10.1620/tjem.256.215
doi: 10.1620/tjem.256.215
|
15 |
ZHANG Q, ZHAO Y, LUO Y, et al. Urinary exosomal miRNA-451a can be used as a potential noninvasive biomarker for diagnosis, reflecting tubulointerstitial damage and therapeutic response in IgA nephropathy[J]. Renal Fail, 2024, 46(1): 2319326. doi:10.1080/0886022x.2024.2319326
doi: 10.1080/0886022x.2024.2319326
|
16 |
ZHAO S, SUN Y, MAO Q, et al. Exosomal miR-4639 and miR-210 in Plasma and Urine as Biomarkers in IgA Nephropathy[J]. Nephron, 2022, 146(6): 539-552. doi:10.1159/000523924
doi: 10.1159/000523924
|
17 |
MIN Q H, CHEN X M, ZOU Y Q, et al. Differential expression of urinary exosomal microRNAs in IgA nephropathy[J]. J Clin Lab Anal, 2018, 32(2): e22226. doi:10.1002/jcla.22226
doi: 10.1002/jcla.22226
|
18 |
MARTINS B, FERNANDES R. Disturbed Matrix Metalloproteinases Activity in Age-Related Macular Degeneration[J]. Adv Exp Med Biol, 2023, 1415: 21-26. doi:10.1007/978-3-031-27681-1_4
doi: 10.1007/978-3-031-27681-1_4
|
19 |
ZHANG J, REN P, WANG Y, et al. Serum Matrix Metalloproteinase-7 Level is Associated with Fibrosis and Renal Survival in Patients with IgA Nephropathy[J]. Kidney Blood Press Res, 2017, 42(3): 541-552. doi:10.1159/000477132
doi: 10.1159/000477132
|
20 |
GENEST D S, BONNEFOY A, KHALILI M, et al. Comparison of Complement Pathway Activation in Autoimmune Glomerulonephritis[J]. Kidney Int Rep, 2022, 7(5): 1027-1036. doi:10.1016/j.ekir.2022.02.002
doi: 10.1016/j.ekir.2022.02.002
|
21 |
MAILLARD N, WYATT R J, JULIAN B A, et al. Current Understanding of the Role of Complement in IgA Nephropathy[J]. J Am Soc Nephrol, 2015, 26(7): 1503-1512. doi:10.1681/asn.2014101000
doi: 10.1681/asn.2014101000
|
22 |
BI T D, ZHENG J N, ZHANG J X, et al. Serum complement C4 is an important prognostic factor for IgA nephropathy: A retrospective study[J]. BMC nephrol, 2019, 20(1): 244. doi:10.1186/s12882-019-1420-0
doi: 10.1186/s12882-019-1420-0
|
23 |
TORIKOSHI K, ENDO T, TSUKAMOTO T, et al. Serum IgA/C3 ratio: A useful marker of disease activity in patients with IgA nephropathy[J]. Int Urol Nephrol, 2024, 56(10): 3389-3396. doi:10.1007/s11255-024-04104-7
doi: 10.1007/s11255-024-04104-7
|
24 |
MEDJERAL-THOMAS N R, LOMAX-BROWNE H J, BECKWITH H, et al. Circulating complement factor H-related proteins 1 and 5 correlate with disease activity in IgA nephropathy[J]. Kidney Int, 2017, 92(4): 942-952. doi:10.1016/j.kint.2017.03.043
doi: 10.1016/j.kint.2017.03.043
|
25 |
GUO W Y, ZHU L, MENG S J, et al. Mannose-Binding Lectin Levels Could Predict Prognosis in IgA Nephropathy[J]. J Am Soc Nephrol, 2017, 28(11): 3175-3181. doi:10.1681/asn.2017010076
doi: 10.1681/asn.2017010076
|
26 |
LUO H L, HE C, XUE H, et al. Serum human epididymis protein 4 is associated with disease severity in patients with IgA nephropathy[J]. Clinical Biochem, 2024, 123: 110701. doi:10.1016/j.clinbiochem.2023.110701
doi: 10.1016/j.clinbiochem.2023.110701
|
27 |
SHIMIZU C, MATSUMOTO K, FUJITA T, et al. Imbalance of interleukin-18 and interleukin-18 binding protein in patients with IgA nephropathy implicating renal vasculopathy[J]. Clin Lab, 2015, 61(1/2): 23-30. doi:10.7754/clin.lab.2014.140515
doi: 10.7754/clin.lab.2014.140515
|
28 |
XU C, PAN K, LI J, et al. Serum soluble interleukin-2 receptor alpha may predict tubulointerstitial inflammatory cell infiltration and short-term disease progression in immunoglobin A nephropathy[J]. Immunol Res, 2024, 72(6): 1350-1364. doi:10.1007/s12026-024-09533-1
doi: 10.1007/s12026-024-09533-1
|
29 |
GROZA Y, JEMELKOVA J, KAFKOVA L R, et al. IL-6 and its role in IgA nephropathy development[J]. Cytokine Growth Factor Rev, 2022, 66: 1-14. doi:10.1016/j.cytogfr.2022.04.001
doi: 10.1016/j.cytogfr.2022.04.001
|
30 |
SUN Y, CAI H, GE J, et al. Tubule-derived INHBB promotes interstitial fibroblast activation and renal fibrosis[J]. J Pathol, 2022, 256(1): 25-37. doi:10.1002/path.5798
doi: 10.1002/path.5798
|
31 |
FUKUDA A, MINAKAWA A, SATO Y, et al. Excretion Patterns of Urinary Sediment and Supernatant Podocyte Biomarkers in Patients with CKD[J]. Kidney360, 2022, 3(1): 63-73. doi:10.34067/kid.0004772021
doi: 10.34067/kid.0004772021
|
32 |
ASAO R, ASANUMA K, KODAMA F, et al. Relationships between levels of urinary podocalyxin, number of urinary podocytes, and histologic injury in adult patients with IgA nephropathy[J]. Clin J Am Soc Nephrol, 2012, 7(9): 1385-1393. doi:10.2215/cjn.08110811
doi: 10.2215/cjn.08110811
|
33 |
PETERS H P E, WAANDERS F, MEIJER E, et al. High urinary excretion of kidney injury molecule-1 is an independent predictor of end-stage renal disease in patients with IgA nephropathy[J]. Nephrol Dial Transplant, 2011, 26(11): 3581-3588. doi:10.1093/ndt/gfr135
doi: 10.1093/ndt/gfr135
|
34 |
ZHAO S, SUN Y, MAO Q, et al. Exosomal miR-4639 and miR-210 in Plasma and Urine as Biomarkers in IgA Nephropathy[J]. Nephron, 2022, 146(6): 539-552. doi:10.1159/000523924
doi: 10.1159/000523924
|
35 |
LI S, HAO H, LI R, et al. Urinary Exosomal MicroRNAs as New Noninvasive Biomarkers of IgA Nephropathy[J]. Tohoku J Exp Med, 2022, 256(3): 215-223. doi:10.1620/tjem.256.215
doi: 10.1620/tjem.256.215
|