[1] |
BENITEZ FUENTES J D, MORGAN E, DE LUNA AGUILAR A, et al. Global stage distribution of breast cancer at diagnosis: A systematic review and meta-analysis[J]. JAMA Oncol, 2024, 10(1): 71-78. doi:10.1001/jamaoncol.2023.4837
doi: 10.1001/jamaoncol.2023.4837
|
[2] |
邓雅倩, 李文肖, 徐泽林, 等. 生长方位量化联合S-Detect技术对乳腺癌腋窝淋巴结转移的预测价值[J]. 实用医学杂志, 2025, 41(1): 100-107.
|
[3] |
刘芬, 赵辉, 郭利敏. 多组学联合检测对乳腺癌临床病理特征、新辅助化疗效果的评估效能[J]. 实用医学杂志, 2024, 40(24): 3539-3546.
|
[4] |
POTT S, LIEB J D. What are super-enhancers?[J]. Nat Genet, 2015, 47(1): 8-12. doi:10.1038/ng.3167
doi: 10.1038/ng.3167
|
[5] |
HNISZ D, ABRAHAM B J, LEE T I, et al. Super-enhancers in the control of cell identity and disease[J]. Cell, 2013, 155(4): 934-947. doi:10.1016/j.cell.2013.09.053
doi: 10.1016/j.cell.2013.09.053
|
[6] |
SIM N, CARTER J M, DEKA K, et al. TWEAK/Fn14 signaling driven super-enhancer reprogramming promotes pro-metastatic metabolic rewiring in triple-negative breast cancer[J]. Nat Commun, 2024, 15(1): 5638. doi:10.1038/s41467-024-50071-z
doi: 10.1038/s41467-024-50071-z
|
[7] |
QIAN H, ZHU M, TAN X, et al. Super-enhancers and the super-enhancer reader BRD4: Tumorigenic factors and therapeutic targets[J]. Cell Death Discov, 2023, 9(1): 470. doi:10.1038/s41420-023-01775-6
doi: 10.1038/s41420-023-01775-6
|
[8] |
ZHENG Z Z, XIA L, HU G S, et al. Super-enhancer-controlled positive feedback loop BRD4/ERα-RET-ERα promotes ERα-positive breast cancer[J]. Nucleic Acids Res, 2022, 50(18): 10230-10248. doi:10.1093/nar/gkac778
doi: 10.1093/nar/gkac778
|
[9] |
CHEN C H, YANG N, ZHANG Y, et al. Inhibition of super enhancer downregulates the expression of KLF5 in basal-like breast cancers[J]. Int J Biol Sci, 2019, 15(8): 1733-1742. doi:10.7150/ijbs.35138
doi: 10.7150/ijbs.35138
|
[10] |
BAMODU O A, WANG Y H, HO C H, et al. Genetic suppressor element 1 (GSE1) promotes the oncogenic and recurrent phenotypes of castration-resistant prostate cancer by targeting tumor-associated calcium signal transducer 2 (TACSTD2)[J]. Cancers, 2021, 13(16): 3959. doi:10.3390/cancers13163959
doi: 10.3390/cancers13163959
|
[11] |
WANG W, WANG S, XU A M, et al. Overexpression of GSE1 related to trastuzumab resistance in gastric cancer cells[J]. Biomed Res Int, 2021, 2021(1): 8834923. doi:10.1155/2021/8834923
doi: 10.1155/2021/8834923
|
[12] |
DEBNATH P, HUIREM R S, DUTTA P, et al. Epithelial-mesenchymal transition and its transcription factors[J]. Biosci Rep, 2022, 42(1): BSR20211754. doi:10.1042/bsr20211754
doi: 10.1042/bsr20211754
|
[13] |
FONTANA R, MESTRE-FARRERA A, YANG J. Update on epithelial-mesenchymal plasticity in cancer progression[J]. Annu Rev Pathol, 2024, 19(1): 133-156. doi:10.1146/annurev-pathmechdis-051222-122423
doi: 10.1146/annurev-pathmechdis-051222-122423
|
[14] |
HASHEMI M, ARANI H Z, OROUEI S, et al. EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions[J]. Biomed Pharmacother, 2022, 155: 113774. doi:10.1016/j.biopha.2022.113774
doi: 10.1016/j.biopha.2022.113774
|
[15] |
PARSONS M J, TAMMELA T, DOW L E. WNT as a driver and dependency in cancer[J]. Cancer Discov, 2021, 11(10): 2413-2429. doi:10.1158/2159-8290.cd-21-0190
doi: 10.1158/2159-8290.cd-21-0190
|
[16] |
RIM E Y, CLEVERS H, NUSSE R. The wnt pathway: From signaling mechanisms to synthetic modulators[J]. Annu Rev Biochem, 2022, 91(1): 571-598. doi:10.1146/annurev-biochem-040320-103615
doi: 10.1146/annurev-biochem-040320-103615
|
[17] |
YAN R, CHEN T. SLC35A2 is a novel prognostic biomarker and promotes cell proliferation and metastasis via wnt/β-catenin/EMT signaling pathway in breast cancer[J]. Sci Rep, 2025, 15(1): 130. doi:10.1038/s41598-024-84584-w
doi: 10.1038/s41598-024-84584-w
|
[18] |
JIA Q, CHEN S, TAN Y, et al. Oncogenic super-enhancer formation in tumorigenesis and its molecular mechanisms[J]. Exp Mol Med, 2020, 52(5): 713-723. doi:10.1038/s12276-020-0428-7
doi: 10.1038/s12276-020-0428-7
|
[19] |
XI Y, WANG R, QU M, et al. Super-enhancer-hijacking RBBP7 potentiates metastasis and stemness of breast cancer via recruiting NuRD complex subunit LSD1[J]. J Transl Med, 2025, 23(1): 266. doi:10.1186/s12967-025-06270-3
doi: 10.1186/s12967-025-06270-3
|
[20] |
NICOSIA L, BOFFO F L, CECCACCI E, et al. Pharmacological inhibition of LSD1 triggers myeloid differentiation by targeting GSE1 oncogenic functions in AML[J]. Oncogene, 2022, 41(6): 878-894. doi:10.1038/s41388-021-02123-7
doi: 10.1038/s41388-021-02123-7
|
[21] |
CHAI P, TIAN J, ZHAO D, et al. GSE1 negative regulation by miR-489-5p promotes breast cancer cell proliferation and invasion[J]. Biochem Biophys Res Commun, 2016, 471(1): 123-128. doi:10.1016/j.bbrc.2016.01.168
doi: 10.1016/j.bbrc.2016.01.168
|
[22] |
MANFIOLETTI G, FEDELE M. Epithelial–mesenchymal transition (EMT) 2021[J]. Int J Mol Sci, 2022, 23(10): 5848. doi:10.3390/ijms23105848
doi: 10.3390/ijms23105848
|
[23] |
XU X, ZHANG M, XU F, et al. Wnt signaling in breast cancer: Biological mechanisms, challenges and opportunities[J]. Mol Cancer, 2020, 19(1): 165. doi:10.1186/s12943-020-01276-5
doi: 10.1186/s12943-020-01276-5
|
[24] |
SONG P, GAO Z, BAO Y, et al. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy[J]. J Hematol Oncol, 2024, 17(1): 46. doi:10.1186/s13045-024-01563-4
doi: 10.1186/s13045-024-01563-4
|
[25] |
ZHANG Y, WANG X. Targeting the wnt/β-catenin signaling pathway in cancer[J]. J Hematol Oncol, 2020, 13(1): 165. doi:10.1186/s13045-020-00990-3
doi: 10.1186/s13045-020-00990-3
|
[26] |
肖知周, 黄莺, 卞华伟. 基于Wnt/β-catenin信号通路介导的自噬和凋亡探讨苦豆子碱对骨质疏松小鼠骨代谢的影响[J].实用医学杂志, 2025, 41(4): 500-508.
|
[27] |
SUN L, XING J, ZHOU X, et al. Wnt/β-catenin signaling, epithelial-mesenchymal transition and crosslink signaling in colorectal cancer cells[J]. Biomed Pharmacother, 2024, 175: 116685. doi:10.1016/j.biopha.2024.116685
doi: 10.1016/j.biopha.2024.116685
|
[28] |
ZHU L, TIAN Q, GAO H, et al. PROX1 promotes breast cancer invasion and metastasis through WNT/β-catenin pathway via interacting with hnRNPK[J]. Int J Biol Sci, 2022, 18(5): 2032-2046. doi:10.7150/ijbs.68960
doi: 10.7150/ijbs.68960
|