[1] |
ALI M, AHMED M, MEMON M, et al. Preeclampsia: A comprehensive review[J]. Clin Chim Acta, 2024, 563(15): 119922. doi:10.1016/j.cca.2024.119922
doi: 10.1016/j.cca.2024.119922
|
[2] |
于素美, 张玉月, 马丽文, 等. MiR⁃15a⁃5p对子痫前期胎盘滋养细胞自噬的影响[J]. 实用医学杂志, 2024, 40(12): 1631-1636.
|
[3] |
ROBERTS J M. Preeclampsia epidemiology (ies) and pathophysiology (ies)[J]. Best Pract Res Clin Obstet Gynaecol, 2024,94: 102480. doi:10.1016/j.bpobgyn.2024.102480
doi: 10.1016/j.bpobgyn.2024.102480
|
[4] |
CHEN A, YU R, JIANG S, et al. Recent advances of microRNAs, long non-coding RNAs, and circular RNAs in preeclampsia[J]. Front Physiol, 2021, 12: 659638. doi:10.3389/fphys.2021.659638
doi: 10.3389/fphys.2021.659638
|
[5] |
NEGRE-SALVAYRE A, SWIADER A, SALVAYRE R, et al. Oxidative stress, lipid peroxidation and premature placental senescence in preeclampsia[J]. Arch Biochem Biophys, 2022, 730: 109416. doi:10.1016/j.abb.2022.109416
doi: 10.1016/j.abb.2022.109416
|
[6] |
ZHAO Y, ZHAO G, LI W. MicroRNA-495 suppresses pre-eclampsia via activation of p53/PUMA axis[J]. Cell Death Discov, 2022, 8(1): 132. doi:10.1038/s41420-022-00874-0
doi: 10.1038/s41420-022-00874-0
|
[7] |
黄洁, 韩健, 郭建新, 等. 子痫前期发病机制研究新进展[J]. 解放军医学杂志, 2025,50(3): 1-12.
|
[8] |
MULDER J W, KUSTERS D M, VAN LENNEP J E R, et al. Lipid metabolism during pregnancy: Consequences for mother and child[J]. Curr Opin Lipidol, 2024, 35(3): 133-140. doi:10.1097/mol.0000000000000927
doi: 10.1097/mol.0000000000000927
|
[9] |
BOTTA M, AUDANO M, SAHEBKAR A, et al. PPAR agonists and metabolic syndrome: An established role?[J]. Int J Mol Sci, 2018, 19(4): 1197. doi:10.3390/ijms19041197
doi: 10.3390/ijms19041197
|
[10] |
黄文亭, 曾子纯, 王冬菊, 等. 改良减少子宫血流灌注法建立子痫前期大鼠模型[J]. 中国实验动物学报, 2019, 27(6): 776-780.
|
[11] |
ZHOU W, WANG H, YANG Y, et al. Trophoblast cell subtypes and dysfunction in the placenta of individuals with preeclampsia revealed by single-cell RNA sequencing[J]. Mol Cells, 2022, 45(5): 317-328. doi:10.14348/molcells.2021.0211
doi: 10.14348/molcells.2021.0211
|
[12] |
HE B, LIU Y, MAURYA M R, et al. The maternal blood lipidome is indicative of the pathogenesis of severe preeclampsia [J]. Lipid Res, 2021, 62: 100118. doi:10.1016/j.jlr.2021.100118
doi: 10.1016/j.jlr.2021.100118
|
[13] |
KHAIRE A A, THAKAR S R, WAGH G N, et al. Placental lipid metabolism in preeclampsia[J]. J Hypertens, 2021, 39(1): 127-134. doi:10.1097/hjh.0000000000002596
doi: 10.1097/hjh.0000000000002596
|
[14] |
吴允, 高颖, 王芳, 等. 糖脂代谢状况与子痫前期合并胎儿生长受限的相关性分析[J]. 贵州医药, 2025, 49(5): 792-794.
|
[15] |
HU M, LI J, BAKER P N, et al. Revisiting preeclampsia: A metabolic disorder of the placenta [J]. FEBS J, 2022, 289(2): 336-354. doi:10.1111/febs.15745
doi: 10.1111/febs.15745
|
[16] |
WANG Y, SSENGONZI R, TOWNLEY-TILSON W D, et al. The Roles of Obesity and ASB4 in Preeclampsia Pathogenesis[J]. Int J Mol Sci, 2024, 25(16): 9017. doi:10.3390/ijms25169017
doi: 10.3390/ijms25169017
|
[17] |
肖燕璇, 张立力, 黎嘉琪, 等. 单胎子痫前期孕妇产前体质量指数与母婴结局关系探讨[J]. 实用医学杂志, 2023, 39(18): 2357-2361.
|
[18] |
DUTTA S, LAI A, SCHOLZ-ROMERO K, et al. Hypoxia-induced small extracellular vesicle proteins regulate proinflammatory cytokines and systemic blood pressure in pregnant rats[J]. Clin Sci, 2020, 134(6): 593-607. doi:10.1042/cs20191155
doi: 10.1042/cs20191155
|
[19] |
BAKRANIA B A, GEORGE E M, GRANGER J P. Animal models of preeclampsia: Investigating pathophysiology and therapeutic targets[J]. Am J Obstet Gynecol, 2022, 226(2): S973-S987. doi:10.1016/j.ajog.2020.10.025
doi: 10.1016/j.ajog.2020.10.025
|
[20] |
GUERBY P, TASTA O, SWIADER A, et al. Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia[J]. Redox Biol, 2021, 40: 101861. doi:10.1016/j.redox.2021.101861
doi: 10.1016/j.redox.2021.101861
|
[21] |
SCHWARTZ K S, SUN M, JALAL D I, et al. Reduced AT2R Signaling Contributes to Endothelial Dysfunction After Preeclampsia[J]. Hypertension, 2025, 82(5): 904-913. doi:10.1161/hypertensionaha.124.24098
doi: 10.1161/hypertensionaha.124.24098
|
[22] |
LI Y, MA L, HE R, et al. Pregnancy Metabolic Adaptation and Changes in Placental Metabolism in Preeclampsia[J]. Geburtshilfe Frauenheilkd, 2024,84(11):1033-1042. doi:10.1055/a-2403-4855
doi: 10.1055/a-2403-4855
|
[23] |
MILLEN K R, BUHIMSCHI C, TABBAH S, et al. 741: Fatty acid synthase (FASN) expression in reproductive tissues and amniotic fluid free fatty acids (FFA) in pregnancies complicated by preeclampsia (PE)[J]. Am J Obstet Gynecol, 2015, 212(1): S362. doi:10.1016/j.ajog.2014.10.947
doi: 10.1016/j.ajog.2014.10.947
|
[24] |
ZHANG Y, LIANG J, GU H, et al. Activation of LXRα attenuates 2-Ethylhexyl diphenyl phosphate (EHDPP) induced placental dysfunction[J]. Ecotoxicol Environ Saf, 2023, 266: 115605. doi:10.1016/j.ecoenv.2023.115605
doi: 10.1016/j.ecoenv.2023.115605
|
[25] |
LEE J M, HAMMARÉN H M, SAVITSKI M M, et al. Control of protein stability by post-translational modifications[J]. Nat Commun, 2023, 14(1): 201. doi:10.1038/s41467-023-35795-8
doi: 10.1038/s41467-023-35795-8
|
[26] |
NIKOLSKY K S, KULIKOVA L I, PETROVSKIY D V, et al. Analysis of structural changes in the protein near the phosphorylation site[J]. Biomolecules, 2023, 13(11): 1564. doi:10.3390/biom13111564
doi: 10.3390/biom13111564
|
[27] |
BRUNMEIR R, XU F. Functional regulation of PPARs through post-translational modifications[J]. Int J Mol Sci, 2018, 19(6): 1738. doi:10.3390/ijms19061738
doi: 10.3390/ijms19061738
|
[28] |
YANG N, WANG Y, TIAN Q, et al. Blockage of PPARγ T166 phosphorylation enhances the inducibility of beige adipocytes and improves metabolic dysfunctions[J]. Cell Death Differ, 2023, 30(3): 766-778. doi:10.1038/s41418-022-01077-x
doi: 10.1038/s41418-022-01077-x
|
[29] |
ZHOU J, JIANG S, LIU D, et al. Bidirectional Mendelian Randomization Analysis of Genetic Proxies of Plasma Fatty Acids and Pre-Eclampsia Risk[J]. Nutrients, 2024, 16(21): 3748. doi:10.3390/nu16213748
doi: 10.3390/nu16213748
|
[30] |
HUDA S S, FORREST R, PATERSON N, et al. In preeclampsia, maternal third trimester subcutaneous adipocyte lipolysis is more resistant to suppression by insulin than in healthy pregnancy[J]. Hypertension, 2014, 63(5): 1094-1101. doi:10.1161/hypertensionaha.113.01824
doi: 10.1161/hypertensionaha.113.01824
|
[31] |
ABDELZAHER W Y, MOSTAFA-HEDEAB G, BAHAA H A, et al. Leukotriene receptor antagonist, montelukast ameliorates L-Name-induced pre-eclampsia in rats through suppressing the IL-6/Jak2/STAT3 signaling pathway[J]. Pharmaceuticals, 2022, 15(8): 914. doi:10.3390/ph15080914
doi: 10.3390/ph15080914
|
[32] |
刘静, 朱文秀, 孟金来, 等. 胎盘植入性疾病发病机制的研究进展[J]. 现代妇产科进展, 2025, 34(02): 147-149+154.
|
[33] |
LAI W, YU L, DENG Y. PPARγ alleviates preeclampsia development by regulating lipid metabolism and ferroptosis[J]. Commun Biol, 2024, 7(1): 429. doi:10.1038/s42003-024-06063-2
doi: 10.1038/s42003-024-06063-2
|