[1] |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1):7-33. doi:10.3322/caac.21708
doi: 10.3322/caac.21708
|
[2] |
SAHA S K, ZHU A X, FUCHS C S, et al. Forty-Year Trends in Cholangiocarcinoma Incidence in the U.S.: Intrahepatic Disease on the Rise[J]. Oncologist, 2016, 21(5):594-599. doi:10.1634/theoncologist.2015-0446
doi: 10.1634/theoncologist.2015-0446
|
[3] |
MAZZAFERRO V, GORGEN A, ROAYAIE S, et al. Liver resection and transplantation for intrahepatic cholangiocarcinoma [J]. J Hepatol, 2020, 72(2):364-377. doi:10.1016/j.jhep.2019.11.020
doi: 10.1016/j.jhep.2019.11.020
|
[4] |
LOWERY M A, BURRIS H A 3rd, JANKU F, et al. Safety and activity of ivosidenib in patients with IDH1-mutant advanced cholangiocarcinoma: a phase 1 study [J]. Lancet Gastroenterol Hepatol, 2019, 4(9):711-720. doi:10.1016/s2468-1253(19)30189-x
doi: 10.1016/s2468-1253(19)30189-x
|
[5] |
RAMASWAMY A, BHARGAVA P, SRINIVAS S, et al. Bevacizumab Erlotinib Switch Maintenance in Chemo-Responsive Advanced Gallbladder and Cholangiocarcinoma (BEER BTC): A Multicenter, Open-Label, Randomized, Phase II Trial [J]. J Clin Oncol, 2024, 42(27):3218-3227. doi:10.1200/jco.23.02420
doi: 10.1200/jco.23.02420
|
[6] |
郝天怡,赫卫清. 大环内酯类抗生素代谢工程的研究进展[J].生物工程学报,2021,37(5):1737-1747.
|
[7] |
LI X Y, LUO Y T, WANG Y H, et al. Anti-inflammatory effect and antihepatoma mechanism of carrimycin [J]. World J Gastroenterol, 2023, 29(14):2134-2152. doi:10.3748/wjg.v29.i14.2134
doi: 10.3748/wjg.v29.i14.2134
|
[8] |
JIN Y, ZUO H X, LI M Y, et al. Anti-Tumor Effects of Carrimycin and Monomeric Isovalerylspiramycin I on Hepatocellular Carcinoma in Vitro and in Vivo [J]. Front Pharmacol, 2021, 12:774231. doi:10.3389/fphar.2021.774231
doi: 10.3389/fphar.2021.774231
|
[9] |
LIANG S Y, ZHAO T C, ZHOU Z H, et al. Anti-tumor effect of carrimycin on oral squamous cell carcinoma cells in vitro and in vivo[J]. Transl Oncol, 2021, 14(6):101074. doi:10.1016/j.tranon.2021.101074
doi: 10.1016/j.tranon.2021.101074
|
[10] |
KALYUKINA M, YOSAATMADJA Y, MIDDLEDITCH M J, et al. TAS-120 Cancer Target Binding: Defining Reactivity and Revealing the First Fibroblast Growth Factor Receptor 1 (FGFR1) Irreversible Structure[J]. Chem Med Chem, 2019, 14(4):494-500. doi:10.1002/cmdc.201800719
doi: 10.1002/cmdc.201800719
|
[11] |
HIDALGO M, ROWINSKY E K. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy [J]. Oncogene, 2000, 19(56):6680-6686. doi:10.1038/sj.onc.1204091
doi: 10.1038/sj.onc.1204091
|
[12] |
田露,薛仁政,张志敏,等. 抗癌药物埃博霉素的生产及工艺发展[J]. 生物技术通报, 2019, 35 (10): 198-204.
|
[13] |
CHENG H, HUANG H, HUANG G. Synthesis and antitumor activity of epothilone B [J]. Eur J Med Chem, 2018,157:925-934. doi:10.1016/j.ejmech.2018.08.055
doi: 10.1016/j.ejmech.2018.08.055
|
[14] |
LIU Z, HUANG M, HONG Y, et al. Isovalerylspiramycin I suppresses non-small cell lung carcinoma growth through ROS-mediated inhibition of PI3K/AKT signaling pathway [J]. Int J Biol Sci, 2022, 18(9):3714-3730. doi:10.7150/ijbs.69989
doi: 10.7150/ijbs.69989
|
[15] |
杨子荣,杨璇,倪婷婷,等. 可利霉素通过调控巨噬细胞极化影响黑色素瘤的增殖[J]. 中国生物工程杂志,2022,42(7):12-23.
|
[16] |
CHAN C Y, YUEN V W, CHIU D K, et al. Polo-like kinase 4 inhibitor CFI-400945 suppresses liver cancer through cell cycle perturbation and eliciting antitumor immunity [J]. Hepatology, 2023, 77(3):729-744. doi:10.1002/hep.32461
doi: 10.1002/hep.32461
|
[17] |
PANDIT B, ROYZEN M. Recent Development of Prodrugs of Gemcitabine [J]. Genes (Basel), 2022, 13(3):466. doi:10.3390/genes13030466
doi: 10.3390/genes13030466
|
[18] |
YAN X, WANG D, NING Z, et al. Lenvatinib inhibits intrahepatic cholangiocarcinoma via Gadd45a-mediated cell cycle arrest [J]. Discov Oncol, 2023, 14(1):26. doi:10.1007/s12672-023-00631-4
doi: 10.1007/s12672-023-00631-4
|
[19] |
刘娟娟,戴剑漉,高晓杰,等. 可利霉素体外抗结肠癌活性的研究[J]. 药物分析杂志,2022,42(7):1142-1152.
|
[20] |
白丽娜,刘颖,唐春晓,等. 可利霉素对胰腺癌细胞生物学功能的影响[J]. 临床肝胆病杂志,2022,38(12):2793-2801.
|
[21] |
DU Z, LOVLY C M. Mechanisms of receptor tyrosine kinase activation in cancer [J]. Mol Cancer, 2018, 17(1):58. doi:10.1186/s12943-018-0782-4
doi: 10.1186/s12943-018-0782-4
|
[22] |
HSU C H, HUANG Y H, LIN S M, et al. AXL and MET in Hepatocellular Carcinoma: A Systematic Literature Review [J]. Liver Cancer, 2022, 11(2):94-112. doi:10.1159/000520501
doi: 10.1159/000520501
|
[23] |
SUN X, CHEN H, YOU S, et al. AXL upregulates c-Myc expression through AKT and ERK signaling pathways in breast cancers [J]. Mol Clin Oncol, 2023, 18(3):22. doi:10.3892/mco.2023.2618
doi: 10.3892/mco.2023.2618
|
[24] |
YEH C Y, SHIN S M, YEH H H, et al. Transcriptional activation of the Axl and PDGFR-α by c-Met through a ras- and Src-independent mechanism in human bladder cancer [J]. BMC Cancer, 2011, 11(1):139. doi:10.1186/1471-2407-11-139
doi: 10.1186/1471-2407-11-139
|
[25] |
LIU Z, WANG Z, CHEN D, et al. Paeoniflorin Inhibits EMT and Angiogenesis in Human Glioblastoma via K63-Linked C-Met Polyubiquitination-Dependent Autophagic Degradation [J]. Front Oncol, 2022, 12:785345. doi:10.3389/fonc.2022.785345
doi: 10.3389/fonc.2022.785345
|
[26] |
RAHNEMAI-AZAR A A, ABBASI A, ACHER A W, et al. Emerging pathways for precision medicine in management of cholangiocarcinoma [J]. Surg Oncol, 2020, 35:47-55. doi:10.1016/j.suronc.2020.08.008
doi: 10.1016/j.suronc.2020.08.008
|