[1] |
PEREZ-BOOTELLO J, COVA-MARTIN R, NAHARRO-RODRIGUEZ J, et al. Vitiligo: Pathogenesis and New and Emerging Treatments[J]. Int J Mol Sci, 2023, 24(24):17306. doi:10.3390/ijms242417306
doi: 10.3390/ijms242417306
|
[2] |
RAMOT Y, ROSENBERG V, ZHOU L, et al. Epidemiology and Treatment Patterns of Patients with Vitiligo: A Real-World Analysis[J]. Adv The, 2024, 41(7):2890-2906. doi:10.1007/s12325-024-02875-0
doi: 10.1007/s12325-024-02875-0
|
[3] |
BELLEI B, PAPACCIO F, PICARDO M. Regenerative Medicine-Based Treatment for Vitiligo: An Overview[J]. Biomedicines, 2022,10(11):2744. doi:10.3390/biomedicines10112744
doi: 10.3390/biomedicines10112744
|
[4] |
JOGE R R, KATHANE P U, JOSHI S H. Vitiligo: A Narrative Review[J]. Cureus, 2022, 14(9):e29307.
|
[5] |
曹露, 赵阳. 皮肤移植治疗稳定期白癜风的研究进展[J]. 实用医学杂志, 2025,41(2):300-304.
|
[6] |
YADAV A K, SINGH P, KHUNGER N. Clinicopathologic Analysis of Stable and Unstable Vitiligo: A Study of 66 Cases[J]. Am J Dermatopathol, 2016, 38(8):608-613. doi:10.1097/dad.0000000000000539
doi: 10.1097/dad.0000000000000539
|
[7] |
ABDALLAH M, LOTFI R, OTHMAN W, et al. Assessment of tissue FoxP3+, CD4+ and CD8+ T-cells in active and stable nonsegmental vitiligo[J]. Int J Dermatol, 2014, 53(8):940-946. doi:10.1111/ijd.12160
doi: 10.1111/ijd.12160
|
[8] |
STRASSNER J P, RASHIGHI M, AHMED R M, et al. Suction blistering the lesional skin of vitiligo patients reveals useful biomarkers of disease activity[J]. J Am Acad Dermatol, 2017, 76(5):847-855. doi:10.1016/j.jaad.2016.12.021
doi: 10.1016/j.jaad.2016.12.021
|
[9] |
ZHANG B, LI T, TANG Y, et al. The effects of 308-nm excimer laser on the infiltration of CD4+, CD8+ T-cells, and regulatory T cells in the lesional skin of patients at active and stable stages of nonsegmental vitiligo[J]. J Dermatolog Treat, 2021, 32(6):580-584. doi:10.1080/09546634.2019.1687825
doi: 10.1080/09546634.2019.1687825
|
[10] |
NG C Y, CHAN Y P, CHIU Y C, et al. Targeting the elevated IFN-γ in vitiligo patients by human anti- IFN-γ monoclonal antibody hampers direct cytotoxicity in melanocyte[J]. J Dermatol Sci, 2023, 110(3):78-88. doi:10.1016/j.jdermsci.2023.04.006
doi: 10.1016/j.jdermsci.2023.04.006
|
[11] |
LIN F, HU W, XU W, et al. CXCL9 as a key biomarker of vitiligo activity and prediction of the success of cultured melanocyte transplantation[J]. Sci Rep, 2021, 11(1):18298. doi:10.1038/s41598-021-97296-2
doi: 10.1038/s41598-021-97296-2
|
[12] |
MARCHIORO H Z, SILVA DE CASTRO C C, FAVA V M, et al. Update on the pathogenesis of vitiligo[J]. An Bras Dermatol, 2022,97(4):478-490. doi:10.1016/j.abd.2021.09.008
doi: 10.1016/j.abd.2021.09.008
|
[13] |
DOSS R W, EL-RIFAIE A A, ABDEL-WAHAB A M, et al. Heat Shock Protein-70 Expression in Vitiligo and its Relation to the Disease Activity[J]. Indian J Dermatol, 2016, 61(4):408-412. doi:10.4103/0019-5154.185704
doi: 10.4103/0019-5154.185704
|
[14] |
OCHOA-RAMÍREZ L A, DÍAZ-CAMACHO S P, MELLADO-CORRALES S N, et al. Analysis of the heat shock protein 70 (HSP70) genetic variants in nonsegmental vitiligo patients[J]. Int J Dermatol, 2023, 62(2):225-230. doi:10.1111/ijd.16487
doi: 10.1111/ijd.16487
|
[15] |
FEGHAHATI F S, GHAFOURI-FARD S. A comprehensive outline of the role of non-coding RNAs in vitiligo[J]. Biochem Biophys Rep, 2025,41:101916. doi:10.1016/j.bbrep.2025.101916
doi: 10.1016/j.bbrep.2025.101916
|
[16] |
ŠAHMATOVA L, TANKOV S, PRANS E, et al. MicroRNA-155 is Dysregulated in the Skin of Patients with Vitiligo and Inhibits Melanogenesis-associated Genes in Melanocytes and Keratinocytes[J]. Acta Derm Venereol, 2016,96(6):742-747.
|
[17] |
BRAHMBHATT H D, GUPTA R, GUPTA A, et al. The long noncoding RNA MALAT1 suppresses miR-211 to confer protection from ultraviolet-mediated DNA damage in vitiligo epidermis by upregulating sirtuin 1[J]. Br J Dermatol, 2021, 184(6):1132-1142. doi:10.1111/bjd.19666
doi: 10.1111/bjd.19666
|
[18] |
MANSURI M S, SINGH M, DWIVEDI M, et al. MicroRNA profiling reveals differentially expressed microRNA signatures from the skin of patients with nonsegmental vitiligo[J]. Br J Dermatol, 2014, 171(5):1263-1267. doi:10.1111/bjd.13109
doi: 10.1111/bjd.13109
|
[19] |
ABDALLAH M, EL-MOFTY M, ANBAR T, et al. CXCL-10 and Interleukin-6 are reliable serum markers for vitiligo activity: A multicenter cross-sectional study[J]. Pigment Cell Melanoma Res, 2018, 31(2):330-336. doi:10.1111/pcmr.12667
doi: 10.1111/pcmr.12667
|
[20] |
UTTMANI B M, ADYA K A, INAMADAR A C. Serum interleukin-6 and high sensitivity C-reactive protein levels and their correlation with the vitiligo disease activity and extent: A cross-sectional study of 58 patients[J]. J Cutan Aesthet Surg, 2024, 17(3):266-271.
|
[21] |
BELPAIRE A, VAN GEEL N, SPEECKAERT R. From IL-17 to IFN-γ in inflammatory skin disorders: Is transdifferentiation a potential treatment target?[J]. Front Immunol, 2022, 13:932265. doi:10.3389/fimmu.2022.932265
doi: 10.3389/fimmu.2022.932265
|
[22] |
BERNARDINI N, SKROZA N, TOLINO E, et al. IL-17 and its role in inflammatory, autoimmune, and oncological skin diseases: state of art[J]. Int J Dermatol, 2020,59(4):406-411. doi:10.1111/ijd.14695
doi: 10.1111/ijd.14695
|
[23] |
NIERADKO-IWANICKA B, PRZYBYLSKA D, BORZĘCKI A. A case-control study on immunologic markers of patients with vitiligo[J]. Biomed Pharmacother, 2022, 156:113785. doi:10.1016/j.biopha.2022.113785
doi: 10.1016/j.biopha.2022.113785
|
[24] |
TOMASZEWSKA K, KOZŁOWSKA M, KASZUBA A, et al. Increased Serum Levels of IFN-γ, IL-1β, and IL-6 in Patients with Alopecia Areata and Nonsegmental Vitiligo[J]. Oxid Med Cell Longev, 2020, 2020:5693572. doi:10.1155/2020/5693572
doi: 10.1155/2020/5693572
|
[25] |
CUSTURONE P, DI BARTOLOMEO L, IRRERA N, et al. Role of Cytokines in Vitiligo: Pathogenesis and Possible Targets for Old and New Treatments[J]. Int J Mol Sci, 2021,22(21):11429. doi:10.3390/ijms222111429
doi: 10.3390/ijms222111429
|
[26] |
MAI Z M, BYRNE S N, LITTLE M P, et al. Solar UVR and Variations in Systemic Immune and Inflammation Markers[J]. JID Innov, 2021, 1(4):100055. doi:10.1016/j.xjidi.2021.100055
doi: 10.1016/j.xjidi.2021.100055
|
[27] |
HOSSAIN M R, ANSARY T M, KOMINE M, et al. Diversified Stimuli-Induced Inflammatory Pathways Cause Skin Pigmentation[J]. Int J Mol Sci, 2021, 22(8):3970. doi:10.3390/ijms22083970
doi: 10.3390/ijms22083970
|
[28] |
YANG L, YANG S, LEI J, et al. Role of chemokines and the corresponding receptors in vitiligo: A pilot study[J]. J Dermatol, 2018, 45(1):31-38. doi:10.1111/1346-8138.14004
doi: 10.1111/1346-8138.14004
|
[29] |
WANG X X, WANG Q Q, WU J Q, et al. Increased expression of CXCR3 and its ligands in patients with vitiligo and CXCL10 as a potential clinical marker for vitiligo[J]. Br J Dermatol, 2016, 174(6):1318-1326. doi:10.1111/bjd.14416
doi: 10.1111/bjd.14416
|
[30] |
ZHANG L, KANG Y, CHEN S, et al. Circulating CCL20: A potential biomarker for active vitiligo together with the number of Th1/17 cells[J]. J Dermatol Sci, 2019, 93(2):92-100. doi:10.1016/j.jdermsci.2018.12.005
doi: 10.1016/j.jdermsci.2018.12.005
|
[31] |
RICHMOND J M, MASTERJOHN E, CHU R, et al. CXCR3 Depleting Antibodies Prevent and Reverse Vitiligo in Mice[J]. J Invest Dermatol, 2017, 137(4):982-985. doi:10.1016/j.jid.2016.10.048
doi: 10.1016/j.jid.2016.10.048
|
[32] |
AULAKH S, GOEL S, KAUR L, GULATI S, et al. Differential expression of serum CXCL9 and CXCL10 levels in vitiligo patients and their correlation with disease severity and stability: A cross-sectional study[J]. Indian J Dermatol Venereol Leprol, 2025, 91(1):9-15. doi:10.25259/ijdvl_793_2023
doi: 10.25259/ijdvl_793_2023
|
[33] |
ERDOĞAN A, MUTLU H S, SOLAKOĞLU S. Autologously transplanted dermis-derived cells alleviated monobenzone-induced vitiligo in mouse[J]. Exp Dermatol, 2022, 31(9):1355-1363. doi:10.1111/exd.14603
doi: 10.1111/exd.14603
|
[34] |
CHALLA A, CHAUHAN S, PANGTI R, et al. Evaluation of clinical efficacy and laboratory indicators of non-cultured epidermal cell suspension and hair follicle cell suspension in surgical management of stable vitiligo: A randomized comparative trial[J]. J Cosmet Dermatol, 2022, 21(12):6958-6964. doi:10.1111/jocd.15407
doi: 10.1111/jocd.15407
|
[35] |
KAWAKAMI T. Surgical procedures and innovative approaches for vitiligo regenerative treatment and melanocytorrhagy[J]. J Dermatol, 2022, 49(4):391-401. doi:10.1111/1346-8138.16316
doi: 10.1111/1346-8138.16316
|
[36] |
HUO J, LIU T, LI F, et al. MicroRNA‑21‑5p protects melanocytes via targeting STAT3 and modulating Treg/Teff balance to alleviate vitiligo[J]. Mol Med Rep, 2021, 23(1):51. doi:10.3892/mmr.2020.11689
doi: 10.3892/mmr.2020.11689
|
[37] |
AGUENNOUZ M, GUARNERI F, OTERI R, et al. Serum levels of miRNA-21-5p in vitiligo patients and effects of miRNA-21-5p on SOX5, beta-catenin, CDK2 and MITF protein expression in normal human melanocytes[J]. J Dermatol Sci, 2021, 101(1):22-29. doi:10.1016/j.jdermsci.2020.10.014
doi: 10.1016/j.jdermsci.2020.10.014
|
[38] |
SHI Q, ZHANG W, GUO S, et al. Oxidative stress-induced overexpression of miR-25: The mechanism underlying the degeneration of melanocytes in vitiligo[J]. Cell Death Differ, 2016, 23(3):496-508. doi:10.1038/cdd.2015.117
doi: 10.1038/cdd.2015.117
|