实用医学杂志 ›› 2025, Vol. 41 ›› Issue (14): 2278-2284.doi: 10.3969/j.issn.1006-5725.2025.14.023
• 综述 • 上一篇
赖静文1,赵雨川2,巫株华2,陈珣珣2(),彭柯浩3,陈喻晖4,魏然4,赖晓宇5,王静宇
收稿日期:
2025-02-06
出版日期:
2025-07-25
发布日期:
2025-07-29
通讯作者:
陈珣珣
E-mail:grace_chen514@163.com
基金资助:
Jingwen LAI1,Yuchuan ZHAO2,Zhuhua WU2,Xunxun CHEN2(),Kehao PENG3,Yuhui CHEN4,Ran WEI4,Xiaoyu LAI5,Jingyu. WANG
Received:
2025-02-06
Online:
2025-07-25
Published:
2025-07-29
Contact:
Xunxun CHEN
E-mail:grace_chen514@163.com
摘要:
结核病仍是全球公共健康的重要威胁之一,其早期诊断和有效治疗一直是研究的重点。然而,传统的结核病病原学诊断方法存在阳性率较低、检测周期较长等局限性,尽管分子诊断技术具备高灵敏度,但其高度依赖于痰液样本,因此难以从根本上解决结核病诊断的难题,在结核病临床实践中,开发不依赖于痰液样本的新技术手段已成为当前亟待攻克的关键任务。近年来,细胞外囊泡作为一种新兴的生物标志物,在肿瘤、感染性疾病及其他重大疾病中表现出巨大潜力,大量研究也表明其在结核病领域中同样具有探索价值。该文深入探讨了细胞外囊泡的生物学特性及其在结核病感染机制中的角色,系统归纳了结核细胞外囊泡作为生物标志物在结核病诊断、治疗监测及疾病机理探索等层面的研究进展与潜在价值,并对其所面临的挑战与发展前景予以分析,旨在为相关领域的科研人员与临床工作者提供新的思路。
中图分类号:
赖静文,赵雨川,巫株华,陈珣珣,彭柯浩,陈喻晖,魏然,赖晓宇,王静宇. 结核细胞外囊泡生物标志物研究新进展与挑战[J]. 实用医学杂志, 2025, 41(14): 2278-2284.
Jingwen LAI,Yuchuan ZHAO,Zhuhua WU,Xunxun CHEN,Kehao PENG,Yuhui CHEN,Ran WEI,Xiaoyu LAI,Jingyu. WANG. Research advances and challenges in tuberculosis⁃associated extracellular vesicle biomarkers[J]. The Journal of Practical Medicine, 2025, 41(14): 2278-2284.
表1
MTB感染相关的细胞外囊泡蛋白质标志物"
编号 | 内容 | 起源 | 分析方法 |
---|---|---|---|
1 | 结核分枝杆菌的细胞外囊泡 | 单克隆抗体 | |
2 | 结核分枝杆菌的细胞外囊泡 | 免疫荧光显微镜 | |
3 | 结核分枝杆菌的细胞外囊泡 | ||
4 | 结核分枝杆菌的细胞外囊泡 | 超高效液相色谱 | |
5 | EchA16, DesA1, Pks13, EchA8, RpIO, Ssb, RpIS, RpIN, RpIE, LpqH, EsxA, EsxO, EsxN, etc. | 结核分枝杆菌的细胞外囊泡 | 无标记质谱 |
6 | MAH104 MAV_5152, MAV_2909, MAV_2345, MAV_4365, MAV_2833, | 结核分枝杆菌的细胞外囊泡 | 质谱法 |
7 | lppX, vapC6, lpqH, pstS1, rpsM, Rv1342c, Rv1676, Rv0724A, prrA, smpB, Rv3649, trmD, hemC, PPE61, etc. | 结核分枝杆菌的细胞外囊泡 | 核酸可编程蛋白质测定法(NAPPA) |
8 | 结核分枝杆菌的细胞外囊泡 | 质谱/质谱光谱 | |
9 | GlnA1, Apa, FbpA, FadA3, Mtc28, AcpM, Fba, Prs etc. | 结核分枝杆菌的细胞外囊泡 |
表2
MTB感染相关的EV-miRNAs标志物"
编号 | EV-miRNAs | 细胞外囊泡来源 | 方法筛选 | 表达模式 | 参考文献 |
---|---|---|---|---|---|
1 | 感染结核分枝杆菌的巨噬细胞上清液 | 减少 | [ | ||
2 | 感染结核分枝杆菌的巨噬细胞上清液 | RNA测序 | 增加 | [ | |
3 | 感染牛分枝杆菌的巨噬细胞的上清液 | RNA测序 | 减少 | [ | |
4 | 肺结核患者血浆 | RNA测序 | 增加 | [ | |
5 | 结核病患者血清 | RNA测序 | 增加 | [ | |
6 | miR-450a-5p, miR-140-5p | LTBI患者血清 | RNA测序 | 增加 | [ |
7 | 结核病患者的血清 | RNA测序 | 增加 | [ | |
8 | ATB患者血清 | RNA测序 | 减少 | [ | |
9 | 结核病患者血清 | 增加 | [ | ||
10 | 结核病患者胸腔积液 | RNA测序 | 增加 | [ | |
11 | 结核病患者胸腔积液 | RNA测序 | 减少 | [ | |
12 | 结核病患者胸腔积液 | RNA测序 | 增加 | [ | |
13 | LTBI患者胸腔积液 | sRNA测序 | 减少 | [ | |
14 | LTBI患者血清 | sRNA测序 | 增加 | [ | |
15 | ATB患者血清 | sRNA测序 | 增加 | [ |
[1] | World Health Organization. Global tuberculosis report 2024 [EB/OL].(2024-11-25)[2025-02-06]. |
[2] | 陈骑,张雅曦,张明霞,等. 结核特异性QFT-TB在结核患者不同类型标本中的检测价值[J]. 实用医学杂志,2024,40(7):1002-1005. |
[3] |
刘志辉,刘健雄. 结核病临床诊疗和流行控制对医学检验的需求、问题与对策[J]. 实用医学杂志,2023,39(11):1341-1346. doi:10.3969/j.issn.1006-5725.2023.11.004
doi: 10.3969/j.issn.1006-5725.2023.11.004 |
[4] |
KUANG L, WU L, LI Y. Extracellular vesicles in tumor immunity: Mechanisms and novel insights[J]. Mol Cancer,2025,24(1):45. doi:10.1186/s12943-025-02233-w
doi: 10.1186/s12943-025-02233-w |
[5] |
HADIFAR S, FATEH A, YOUSEFI M H, et al.Exosomes in tuberculosis: Still terra incognita?[J].J Cell Physiol,2019,234(3):2104-2111. doi:10.1002/jcp.27555
doi: 10.1002/jcp.27555 |
[6] | 陈舒,张静蕾,荣康,等. 外泌体在胃癌远处转移和耐药性中的研究进展[J]. 实用医学杂志,2024,40(6):870-876. |
[7] |
BONGIOVANNI L, ANDRIESSEN A, WAUBEN M H M,et al.Extracellular vesicles: Novel opportunities to understandand detect neoplastic diseases[J]. Vet Pathol,2021,58(3):453-471. doi:10.1177/0300985821999328
doi: 10.1177/0300985821999328 |
[8] |
JURKOSHEK K S, WANG Y, ATHMAN J J,et al. Interspecies Communication between Pathogens and Immune Cells via Bacterial Membrane Vesicles[J]. Front Cell Dev Biol,2016,4:125. doi:10.3389/fcell.2016.00125
doi: 10.3389/fcell.2016.00125 |
[9] |
ATHMAN J J, WANG Y, MCDONALD D J,et al. Bacterial membrane vesicles mediate the release of Mycobacterium tuberculosis lipoglycans and lipoproteins from infected macrophages[J]. J Immunol,2015,195(3):1044-1053. doi:10.4049/jimmunol.1402894
doi: 10.4049/jimmunol.1402894 |
[10] |
SINGH P P, LI L, SCHOREY J S. Exosomal RNA from Mycobacterium tuberculosis-Infected Cells Is Functional in Recipient Macrophages[J]. Traffic,2015,16(6):555-571. doi:10.1111/tra.12278
doi: 10.1111/tra.12278 |
[11] | ZHENG W, LACOURSE S M, SONG B, et al. Diagnosis of paediatric tuberculosis by optically detecting two virulence factors on extracellular vesicles in blood samples[J]. Nat Biomed Eng,2022,6(8):979-991. |
[12] |
VALIZADEH A, IMANI FOOLADI A A, SEDIGHIAN H,et al. Evaluating the performance of PPE44,HSPX,ESAT-6 and CFP-10 factors in tuberculosis subunit vaccines[J]. Curr Microbiol,2022,79(9):260. doi:10.1007/s00284-022-02949-8
doi: 10.1007/s00284-022-02949-8 |
[13] |
ZHANG Y W, ZHU J H, WANG Z Q,et al. HspX promotes the polar localization of mycobacterial protein aggregates[J]. Sci Rep,2019,9(1):14571. doi:10.1038/s41598-019-51132-w
doi: 10.1038/s41598-019-51132-w |
[14] |
KRUH-GARCIA N A, WOLFE L M, DOBOS K M. Deciphering the role of exosomes in tuberculosis[J]. Tuberculosis (Edinb),2015,95(1):26-30. doi:10.1016/j.tube.2014.10.010
doi: 10.1016/j.tube.2014.10.010 |
[15] |
CHATTERJEE S, KUNDAPURA S V, BASAK A J, et al. High-resolution crystal structure of LpqH, an immunomodulatory surface lipoprotein of Mycobacterium tuberculosis reveals a distinct fold and a conserved cleft on its surface[J]. Int J Biol Macromol,2022,210:494-503. doi:10.1016/j.ijbiomac.2022.04.196
doi: 10.1016/j.ijbiomac.2022.04.196 |
[16] |
MONTALVO-QUIRÓS S, VALLET-REGÍ M, PALACIOS A, et al. Mesoporous silica nanoparticles as a potential platform for vaccine development against tuberculosis[J]. Pharmaceutics,2020,12(12):1218. doi:10.3390/pharmaceutics12121218
doi: 10.3390/pharmaceutics12121218 |
[17] |
BANDO-CAMPOS G, JUÁREZ-LÓPEZ D, ROMÁN-GONZÁL-EZ S A,et al. Recombinant O-mannosylated protein production (PstS-1) from Mycobacterium tuberculosis in Pichia pastoris (Komagataella phaffii) as a tool to study tuberculosis infection[J]. Microb Cell Fact,2019,18(1):11. doi:10.1186/s12934-019-1059-3
doi: 10.1186/s12934-019-1059-3 |
[18] |
ZHANG D, YI Z, FU Y. Downregulation of miR-20b-5p facilitates Mycobacterium tuberculosis survival in RAW 264.7 macrophages via attenuating the cell apoptosis by Mcl-1 upregulation[J]. J Cell Biochem,2019,120(4):5889-5896. doi:10.1002/jcb.27874
doi: 10.1002/jcb.27874 |
[19] |
CHANG S Y, CHEN M L, LEE M R, et al. SP110 polymorphisms are genetic markers for vulnerability to latent and active tuberculosis infection in Taiwan[J]. Dis Markers,2018,2018:4687380. doi:10.1155/2018/4687380
doi: 10.1155/2018/4687380 |
[20] |
LEE S W, WU L S, HUANG G M,et al. Gene expression profiling identifies candidate biomarkers for active and latent tuberculosis[J]. BMC Bioinformatics, 2016,17(Suppl 1):3. doi:10.1186/s12859-015-0848-x
doi: 10.1186/s12859-015-0848-x |
[21] |
WANG S, HE L, WU J, et al. Transcriptional profiling of human peripheral blood mononuclear cells identifies diagnostic biomarkers that distinguish active and latent tuberculosis[J]. Front Immunol,2019,10:2948. doi:10.3389/fimmu.2019.02948
doi: 10.3389/fimmu.2019.02948 |
[22] |
ROHLWINK U K, FIGAJI A, WILKINSON K A, et al. Tuberculous meningitis in children is characterized by compartmentalized immune responses and neural excitotoxicity[J]. Nat Commun,2019,10(1):3767. doi:10.1038/s41467-019-11783-9
doi: 10.1038/s41467-019-11783-9 |
[23] |
VAN RENSBURG I C, WAGMAN C, STANLEY K, et al. Successful TB treatment induces B-cells expressing FASL and IL5RA mRNA[J]. Oncotarget,2017,8(2):2037-2043. doi:10.18632/oncotarget.12184
doi: 10.18632/oncotarget.12184 |
[24] |
HU X, LIAO S, BAI H, et al. Integrating exosomal microRNAs and electronic health data improved tuberculosis diagnosis[J]. EBioMedicine,2019,40:564-573. doi:10.1016/j.ebiom.2019.01.023
doi: 10.1016/j.ebiom.2019.01.023 |
[25] |
ALIPOOR S D, TABARSI P, VARAHRAM M,et al. Serum exosomal miRNAs are associated with active pulmonary tuberculosis[J]. Dis Markers,2019,2019:1907426. doi:10.1155/2019/1907426
doi: 10.1155/2019/1907426 |
[26] |
LYU L, ZHANG X, LI C, et al. Small RNA profiles of serum exosomes derived from individuals with latent and active tuberculosis[J]. Front Microbiol,2019,10:1174. doi:10.3389/fmicb.2019.01174
doi: 10.3389/fmicb.2019.01174 |
[27] |
ZHANG D, YI Z, FU Y. Downregulation of miR-20b-5p facilitates Mycobacterium tuberculosis survival in RAW 264.7 macrophages via attenuating the cell apoptosis by Mcl-1 upregulation[J]. J Cell Biochem,2019,120(4):5889-5896. doi:10.1002/jcb.27874
doi: 10.1002/jcb.27874 |
[28] |
ZHAN X, YUAN W, ZHOU Y, et al. Small RNA sequencing and bioinformatics analysis of RAW264.7-derived exosomes after Mycobacterium Bovis Bacillus Calmette-Guérin infection[J]. BMC Genomics,2022,23(1):355. doi:10.1186/s12864-022-08590-w
doi: 10.1186/s12864-022-08590-w |
[29] |
KAUSHIK A C, WU Q, LIN L, et al. Exosomal ncRNAs profiling of mycobacterial infection identified miRNA-185-5p as a novel biomarker for tuberculosis[J]. Brief Bioinform,2021,22(6):bbab210. doi:10.1093/bib/bbab210
doi: 10.1093/bib/bbab210 |
[30] |
TU H, YANG S, JIANG T, et al. Elevsated pulmonary tuberculosis biomarker miR-423-5p plays critical role in the occurrence of active TB by inhibiting autophagosome-lysosome fusion[J]. Emerg Microbes Infect,2019,8(1):448-460. doi:10.1080/22221751.2019.1590129
doi: 10.1080/22221751.2019.1590129 |
[31] |
WANG Y, XU Y M, ZOU Y Q, et al. Identification of differential expressed PE exosomal miRNA in lung adenocarcinoma, tuberculosis, and other benign lesions[J]. Medicine (Baltimore),2017,96(44):e8361. doi:10.1097/md.0000000000008361
doi: 10.1097/md.0000000000008361 |
[32] |
ZHANG X, BAO L, YU G, et al. Exosomal miRNA-profiling of pleural effusion in lung adenocarcinoma and tuberculosis[J]. Front Surg,2023,9:1050242. doi:10.3389/fsurg.2022.1050242
doi: 10.3389/fsurg.2022.1050242 |
[33] |
GUIO H, ALIAGA-TOBAR V, GALARZA M, et al.Comparative Profiling of Circulating Exosomal Small RNAs Derived From Peruvian Patients With Tuberculosis and Pulmonary Adenocarcinoma[J]. Front Cell Infect Microbiol,2022,12:909837. doi:10.3389/fcimb.2022.909837
doi: 10.3389/fcimb.2022.909837 |
[34] | LUO H L, PENG Y, LUO H, et al. Circular RNA hsa_circ_0001380 in peripheral blood as a potential diagnostic biomarker for active pulmonary tuberculosis[J]. Mol Med Rep,2020,21(4):1890-1896. |
[35] |
WANG J, LI Y, WANG N, et al. Functions of exosomal non-coding RNAs to the infection with Mycobacterium tuberculosis[J]. Front Immunol,2023,14:1127214. doi:10.3389/fimmu.2023.1127214
doi: 10.3389/fimmu.2023.1127214 |
[36] |
CHEN L L. The expanding regulatory mechanisms and cellular functions of circular RNAs[J]. Nat Rev Mol Cell Biol,2020,21(8):475-490. doi:10.1038/s41580-020-0243-y
doi: 10.1038/s41580-020-0243-y |
[37] |
LIU H, LU G, WANG W, et al. A panel of circRNAs in the serum serves as biomarkers for mycobacterium tuberculosis infection[J]. Front Microbiol,2020,11:1215. doi:10.3389/fmicb.2020.01215
doi: 10.3389/fmicb.2020.01215 |
[38] |
LAKSHMI S, HUGHES T A, PRIYA S. Exosomes and exosomal RNAs in breast cancer:A status update[J]. Eur J Cancer,2021,144:252-268. doi:10.1016/j.ejca.2020.11.033
doi: 10.1016/j.ejca.2020.11.033 |
[39] |
FU Y, GAO K, TAO E, et al. Aberrantly Expressed Long Non-Coding RNAs In CD8+ T Cells Response to Active Tuberculosis[J]. J Cell Biochem,2017,118(12):4275-4284. doi:10.1002/jcb.26078
doi: 10.1002/jcb.26078 |
[40] |
WANG Y, ZHONG H, XIE X, et al. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection[J]. Proc Natl Acad Sci U S A,2015,112(29):E3883-E3892. doi:10.1073/pnas.1501662112
doi: 10.1073/pnas.1501662112 |
[41] |
YI Z, LI J, GAO K, et al. Identifcation of differentially expressed long non-coding RNAs in CD4+ T cells response to latent tuberculosis infection[J]. J Infect,2014,69(6):558-568. doi:10.1016/j.jinf.2014.06.016
doi: 10.1016/j.jinf.2014.06.016 |
[42] |
DENG G, JI N, SHI X, et al. Effects of Mycobacterium tuberculosis Rv1096 on mycobacterial cell division and modulation on macrophages[J]. Microb Pathog,2020,141:103991. doi:10.1016/j.micpath.2020.103991
doi: 10.1016/j.micpath.2020.103991 |
[43] |
WANG L, XIE B, ZHANG P, et al. LOC152742 as a biomarker in the diagnosis of pulmonary tuberculosis infection[J]. J Cell Biochem,2019,120(6):8949-8955. . doi:10.1002/jcb.27452
doi: 10.1002/jcb.27452 |
[44] |
CHEN Z L, WEI L L, SHI L Y, et al. Screening and identification of lncRNAs as potential biomarkers for pulmonary tuberculosis[J]. Sci Rep,2017,7(1):16751. doi:10.1038/s41598-017-17146-y
doi: 10.1038/s41598-017-17146-y |
[45] |
KIRAN D, PODELL B K, CHAMBERS M, et al.Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: A review[J]. Semin Immunopathol,2016,38(2):167-183. doi:10.1007/s00281-015-0537-x
doi: 10.1007/s00281-015-0537-x |
[46] |
DAHIYA B, KHAN A, MOR P, et al. Detection of Mycobacterium tuberculosis lipoarabinomannan and CFP-10 (Rv3874) from urinary extracellular vesicles of tuberculosis patients by immuno-PCR[J]. Pathog Dis,2019,77(5):ftz049. doi:10.1093/femspd/ftz056
doi: 10.1093/femspd/ftz056 |
[47] |
BIADGLEGNE F, SCHMIDT J R, ENGEL K M, et al. Mycobacterium tuberculosis affects protein and lipid content of circulating exosomes in infected patients depending on tuberculosis disease state[J]. Biomedicines,2022,10(4):783. doi:10.3390/biomedicines10040783
doi: 10.3390/biomedicines10040783 |
[48] |
CHEN J X, HAN Y S, ZHANG S Q, et al. Novel therapeutic EVsaluation biomarkers of lipid metabolism targets in uncomplicated pulmonary tuberculosis patients[J]. Signal Transduct Target Ther,2021,6(1):22. doi:10.1038/s41392-020-00427-w
doi: 10.1038/s41392-020-00427-w |
[1] | 赵璐,支慧文,李亚峰. 生物标志物在IgA肾病诊断及预测疾病进展中的作用[J]. 实用医学杂志, 2025, 41(9): 1267-1272. |
[2] | 黄惠敏,刘晨昕,方艳婷,郑佩燕. 涎液化糖链抗原-6在儿童特发性肺含铁血黄素沉着症中的诊断价值[J]. 实用医学杂志, 2025, 41(4): 594-599. |
[3] | 犹太线,舒丞杰,徐明龙,黄梅,李娜娜,彭章丽. 利福平耐药结核病患者治疗后贝达喹啉血药浓度的影响因素分析及其与预后的关系[J]. 实用医学杂志, 2025, 41(13): 2073-2081. |
[4] | 吕月贤,毕秀,刘颖,崔淑静,赵立新,高歌,王建霞,李娟,李军. 血浆焦孔素D C-末端片段在脓毒症早期诊断中的价值[J]. 实用医学杂志, 2025, 41(12): 1899-1906. |
[5] | 王龙,吴映敏,尚莎,王璐. 5'-tRF-GlyGCC在结直肠癌早期诊断价值[J]. 实用医学杂志, 2025, 41(11): 1730-1735. |
[6] | 杨潇,王涛,王伟,彭耀辉,陈妍,曾海平,杨宝. 结直肠癌患者的血清脂质组学特点及其诊断价值[J]. 实用医学杂志, 2025, 41(11): 1742-1750. |
[7] | 王佳慧,郑可,李雪梅. 脂质组学在肾脏疾病中的应用与进展[J]. 实用医学杂志, 2025, 41(1): 1-6. |
[8] | 袁宸,赵霞,吴嘉宝,严花. S1P在哮喘中的研究现状及应用前景[J]. 实用医学杂志, 2024, 40(7): 936-940. |
[9] | 刘伟峰,戴政,周毅彬,封凯文,魏恺,孙古乐,阳东荣,朱进. 尿液蛋白激酶Y基因启动子位点甲基化在前列腺癌早期诊断中的价值[J]. 实用医学杂志, 2024, 40(5): 688-694. |
[10] | 卓文基,魏然,陈燕梅,陈珣珣,余美玲,郭卉欣,梁鸿迪,梁静,赖晓宇. 2014-2020年广东省不同年龄段结核病患者耐药特征及应对防治策略[J]. 实用医学杂志, 2024, 40(5): 702-707. |
[11] | 邓航,张浩. 肝细胞癌预测模型的临床应用:当前挑战与未来方向[J]. 实用医学杂志, 2024, 40(24): 3561-3567. |
[12] | 黄义梅,赵璐露,华宝桐. 植入式心电事件监测仪在房颤中的应用及进展[J]. 实用医学杂志, 2024, 40(21): 3095-3100. |
[13] | 俞天悦,郭茜,胡昊,苏宇静,陈剑华. 精神分裂症中氧化应激相关通路与诊断和预测价值的研究进展[J]. 实用医学杂志, 2024, 40(20): 2935-2940. |
[14] | 杨舒婷,罗说明,周智广. 糖尿病分型新视野——基于临床表现向基于病因分子机制转变[J]. 实用医学杂志, 2024, 40(16): 2199-2205. |
[15] | 杨洁,李春红,黄婧菲,陈治伟,柳林. hsa_circ_0003922在子宫内膜样癌中的表达及意义[J]. 实用医学杂志, 2024, 40(14): 1975-1980. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||