实用医学杂志 ›› 2025, Vol. 41 ›› Issue (17): 2646-2652.doi: 10.3969/j.issn.1006-5725.2025.17.006
• 临床新进展 • 上一篇
收稿日期:
2025-05-22
出版日期:
2025-09-10
发布日期:
2025-09-05
通讯作者:
吕金鹏
E-mail:lvjinpeng1988@126.com
作者简介:
基金资助:
Rongyin GAO1,Congchong WAN2,Chuanwei YIN3,Jinpeng LÜ3()
Received:
2025-05-22
Online:
2025-09-10
Published:
2025-09-05
Contact:
Jinpeng Lü
E-mail:lvjinpeng1988@126.com
摘要:
光疗在白癜风治疗中具有重要地位。窄谱中波紫外线(narrow-band ultraviolet B, NB-UVB)是目前临床治疗非节段型白癜风的一线光疗手段。近年来,可见光逐渐成为治疗白癜风的一种新兴方式。研究表明,氦氖激光对于节段型白癜风具有较好的治疗效果,蓝光对局限型白癜风治疗效果较好,而NB-UVB更适合散发或泛发型白癜风的治疗。不同的光疗方式具有不同的作用特点,诱导白斑复色的作用机制涉及多种生物蛋白以及相关信号通路。本文就近年来几种光疗手段在白癜风治疗中的研究进展进行综述。
中图分类号:
高榕荫,万聪翀,殷川伟,吕金鹏. 光疗在白癜风治疗中的研究进展[J]. 实用医学杂志, 2025, 41(17): 2646-2652.
Rongyin GAO,Congchong WAN,Chuanwei YIN,Jinpeng LÜ. Research progress on the phototherapy in vitiligo[J]. The Journal of Practical Medicine, 2025, 41(17): 2646-2652.
表1
NB-UVB联合疗法治疗白癜风的研究进展"
类别 | 联合药物 | 研究类型 | 研究对象 | 研究结果 |
---|---|---|---|---|
(1)JAK抑制剂 | 阿布昔替尼 (XU等[ | 观察性研究 | 未分型, 进展期(n = 11) | 治疗24周后,VASI改善程度22.07%(P = 0.003 9);所有11例患者(2.0±1.2)个月进入疾病稳定期;3例(27.3%)患者报告头晕、头痛和胃肠道不适等轻微不良反应 |
巴瑞替尼 (HU等[ | 前瞻性、对照、 开放标签研究 | 非节段型, 进展期(n = 33) | 治疗16周时,联合治疗组70.6%(12/17)患者达到 T-VASI50,显著优于对照组12.5%(2/16)(RR = 5.6,95%CI:1.5 ~ 21.4,P = 0.001);联合治疗组4例患者出现红斑、水疱、痤疮、灼痛;对照组2例患者出现红斑、水疱,所有不良事件都是轻微的、不需停药处理 | |
巴瑞替尼 (ZHOU等[ | 回顾性、 对照研究 | 非节段型, 进展期(n = 101) | 治疗6个月时,联合治疗组患者总体VASI改善程度明显高于对照组,分别为53.16%和50.00%(P = 0.042);其中面颈部VASI改善70.08%和62.41%(P = 0.010)、躯干VASI改善67.03%和45.55%(P = 0.016)、四肢VASI改善65.22%和43.39%(P = 0.033);联合治疗组有4例患者报告红斑和轻微瘙痒、对照组3例患者报告瘙痒和灼痛 | |
托法替布 (SONG等[ | 真实世界研究 | 泛发的非节段型 (n = 34) | 治疗16周时,联合治疗组患者总体VASI改善程度明显高于对照组,分别为90.35%和30.10%(P = 0.001);其中躯干VASI改善91.45%和34.97%(P = 0.001)、四肢VASI改善94.51%和28.44%(P = 0.017)、肢端VASI改善51.00%和0%(P = 0.022);联合治疗组有 3例患者报告了轻微疼痛和皮肤干燥、对照组2例患者出现红斑和皮肤灼痛 | |
芦可替尼 (PANDYA等[ | 开放标签研究 | 未分型(n = 19) | 治疗104周时,78.9%(15/19)患者面部VASI明显改善,改善程度50.2%;94.7%(18/19)患者总体VASI改善,改善程度29.5%。该项研究未提供统计检验值 | |
(2)PGF2α类似物 | 拉坦前列素 (FAWZY等[ | 随机对照研究 | 非节段型, 稳定期(n = 60) | 治疗24周时,与对照组相比,联合治疗组患者VESTA评分显著提高,分别为(21.53 ± 33.79)和(40.8 ± 40.33)(P = 0.032);复发率分别为13.3%和0%(P = 0.038);联合治疗组有3例患者报告出现局部僵硬 |
比马前列素 (SILPA-ARCHA等[ 2023) | 单盲随机对照研究 | 非节段和节段型, 稳定期(n =1 9) | 治疗8个月后,安慰剂组、比马前列素单独给药和比马前列素联合NB-UVB治疗组患者VASI终点值存在显著差异,分别为(88.42±23.1)、(72.37±26.2)、(55.00±27.9)(P = 0.002);未有不良事件报告 |
[1] |
SENESCHAL J, SPEECKAERT R, TAIEB A, et al. Worldwide expert recommendations for the diagnosis and management of vitiligo: Position statement from the international Vitiligo Task Force-Part 2: Specific treatment recommendations[J]. J Eur Acad Dermatol Venereol, 2023, 37(11):2185-2195. doi:10.1111/jdv.19450
doi: 10.1111/jdv.19450 |
[2] | 中国中西医结合学会皮肤性病专业委员会色素病学组, 中华医学会皮肤性病学分会白癜风研究中心, 中国医师协会皮肤科医师分会色素病专委会. 白癜风诊疗共识(2024版)[J]. 中华皮肤科杂志, 2024,57(12):1065-1070. |
[3] |
YARDMAN-FRANK J M, FISHER D E. Skin pigmentation and its control: From ultraviolet radiation to stem cells[J]. Exp Dermatol, 2021, 30(4):560-571. doi:10.1111/exd.14260
doi: 10.1111/exd.14260 |
[4] |
WINKIE M J, SAKUNCHOTPANIT G, SALAZAR C E, et al. A focused review of visible light therapies for vitiligo[J]. Photodermatol Photoimmunol Photomed, 2024, 40(1):e12939. doi:10.1111/phpp.12939
doi: 10.1111/phpp.12939 |
[5] |
ELEFTHERIADOU V, ATKAR R, BATCHELOR J, et al. British Association of Dermatologists guidelines for the management of people with vitiligo 2021[J]. Br J Dermatol, 2022, 186(1):18-29. doi:10.1111/bjd.20596
doi: 10.1111/bjd.20596 |
[6] |
BOUCEIRO M R, ALPALHAO M, FILIPE P. UVB phototherapy in the treatment of vitiligo: State of the art and clinical perspectives[J]. Photodermatol Photoimmunol Photomed, 2022, 38(3):215-223. doi:10.1111/phpp.12740
doi: 10.1111/phpp.12740 |
[7] |
ESMAT S M, EL-MOFTY M, RASHEED H, et al. Efficacy of narrow band UVB with or without OMP in stabilization of vitiligo activity in skin photo-types (Ⅲ-Ⅴ): A double-blind, randomized, placebo-controlled, prospective, multicenter study[J]. Photodermatol Photoimmunol Photomed, 2022, 38(3):277-287. doi:10.1111/phpp.12749
doi: 10.1111/phpp.12749 |
[8] |
ZHU B, LIU C, ZHANG L, et al. Comparison of NB-UVB combination therapy regimens for vitiligo: A systematic review and network meta-analysis[J]. J Cosmet Dermatol, 2023, 22(3):1083-1098. doi:10.1111/jocd.15534
doi: 10.1111/jocd.15534 |
[9] | 石静艺, 王红娟, 康晓静. 窄谱中波紫外线联合其他疗法治疗白癜风的新进展[J]. 实用皮肤病学杂志, 2023, 16(3):164-167. |
[10] |
XU Z, XUAN Y, LI Y, et al. A prospective observational study of oral abrocitinib and narrow-band ultraviolet-B in refractory progressive vitiligo[J]. J Am Acad Dermatol, 2024, 91(3):590-592. doi:10.1016/j.jaad.2024.05.078
doi: 10.1016/j.jaad.2024.05.078 |
[11] |
HU Z, LU L, FENG J, et al. Low-Dose Baricitinib Plus Narrow-Band Ultraviolet B for the Treatment of Progressive Non-Segmental Vitiligo: A Prospective, Controlled, Open-Label Study[J]. Pigment Cell Melanoma Res, 2025, 38(1):e13209. doi:10.1111/pcmr.13209
doi: 10.1111/pcmr.13209 |
[12] |
ZHOU B, GUI J, WANG T, et al. Combination Therapy with Baricitinib and Narrowband Ultraviolet B for Active Non-Segmental Vitiligo: A Retrospective Controlled Study[J]. Clin Cosmet Investig Dermatol, 2024, 17:2933-2944. doi:10.2147/ccid.s501688
doi: 10.2147/ccid.s501688 |
[13] |
SONG H, HU Z, ZHANG S, et al. Effectiveness and safety of tofacitinib combined with narrowband ultraviolet B phototherapy for patients with refractory vitiligo in real-world clinical practice[J]. Dermatol Ther, 2022, 35(11):e15821. doi:10.1111/dth.15821
doi: 10.1111/dth.15821 |
[14] |
PANDYA A G, HARRIS J E, LEBWOHL M, et al. Addition of Narrow-Band UVB Phototherapy to Ruxolitinib Cream in Patients With Vitiligo[J]. J Invest Dermatol, 2022, 142(12):3352-3355. doi:10.1016/j.jid.2022.05.1093
doi: 10.1016/j.jid.2022.05.1093 |
[15] |
FAWZY M, AL-MOKADEM S, ALSHEREEF M, et al. Narrowband ultraviolet B phototherapy combined with intralesional injection of either latanoprost or platelet-rich plasma for stable nonsegmental vitiligo[J]. Photodermatol Photoimmunol Photomed, 2024, 40(1):e12929. doi:10.1111/phpp.12929
doi: 10.1111/phpp.12929 |
[16] |
SILPA-ARCHA N, LIKITTANASOMBAT S, APINUNTHAM C, et al. The efficacy of bimatoprost ophthalmic solution combined with NB-UVB phototherapy in non-segmental and segmental vitiligo: A single-blind randomized controlled study[J]. Sci Rep, 2023, 13(1):6438. doi:10.1038/s41598-023-32591-8
doi: 10.1038/s41598-023-32591-8 |
[17] |
BARBULESCU C C, GOLDSTEIN N B, ROOP D R, et al. Harnessing the Power of Regenerative Therapy for Vitiligo and Alopecia Areata[J]. J Invest Dermatol, 2020, 140(1):29-37. doi:10.1016/j.jid.2019.03.1142
doi: 10.1016/j.jid.2019.03.1142 |
[18] |
GAUTHIER Y, ALMASI-NASRABADI M, CARIO-ANDRE M, et al. Tacrolimus (FK506) ointment combined with Nb-UVB could activate both hair follicle (HF) and dermal melanocyte precursors in vitiligo: The first histopathological and clinical study[J]. Arch Dermatol Res, 2021, 313(5):383-388. doi:10.1007/s00403-020-02068-z
doi: 10.1007/s00403-020-02068-z |
[19] | 陆子轩, 吴建华. 细胞因子在白癜风发病机制中的研究进展[J]. 实用皮肤病学杂志, 2023, 16(5):296-302. |
[20] |
MOON H R, JUNG J M, KIM S Y, et al. TGF-beta3 suppresses melanogenesis in human melanocytes cocultured with UV-irradiated neighboring cells and human skin[J]. J Dermatol Sci, 2020, 99(2):100-108. doi:10.1016/j.jdermsci.2020.06.007
doi: 10.1016/j.jdermsci.2020.06.007 |
[21] |
KATKAT E, DEMIRCI Y, HEGER G, et al. Canonical Wnt and TGF-beta/BMP signaling enhance melanocyte regeneration but suppress invasiveness, migration, and proliferation of melanoma cells[J]. Front Cell Dev Biol, 2023, 11:1297910. doi:10.3389/fcell.2023.1297910
doi: 10.3389/fcell.2023.1297910 |
[22] |
YANG G, LI Y, NISHIMUR E K, et al. Inhibition of PAX3 by TGF-beta modulates melanocyte viability[J]. Mol Cell, 2008, 32(4):554-563. doi:10.1016/j.molcel.2008.11.002
doi: 10.1016/j.molcel.2008.11.002 |
[23] |
QUAN T, HE T, KANG S, et al. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling[J]. Am J Pathol, 2004, 165(3):741-751. doi:10.1016/s0002-9440(10)63337-8
doi: 10.1016/s0002-9440(10)63337-8 |
[24] |
GOLDSTEIN N B, KOSTER M I, JONES K L, et al. Repigmentation of Human Vitiligo Skin by NBUVB Is Controlled by Transcription of GLI1 and Activation of the beta-Catenin Pathway in the Hair Follicle Bulge Stem Cells[J]. J Invest Dermatol, 2018, 138(3):657-668. doi:10.1016/j.jid.2017.09.040
doi: 10.1016/j.jid.2017.09.040 |
[25] |
GOLDSTEIN N B, STEEL A, TOMB L, et al. Vitiligo non-respon-ding lesions to narrow band UVB have intriguing cellular and molecular abnormalities that may prevent epidermal repigmentation[J]. Pigment Cell Melanoma Res, 2024, 37(3):378-390. doi:10.1111/pcmr.13160
doi: 10.1111/pcmr.13160 |
[26] |
CUI R, WIDLUND H R, FEIGE E, et al. Central role of p53 in the suntan response and pathologic hyperpigmentation[J]. Cell, 2007, 128(5):853-864. doi:10.1016/j.cell.2006.12.045
doi: 10.1016/j.cell.2006.12.045 |
[27] |
AWAD S S, MOFTAH N H, RASHED L A, et al. Evaluation of the effect of narrow band-ultraviolet B on the expression of tyrosinase, TYRP-1, and TYRP-2 mRNA in vitiligo skin and their correlations with clinical improvement: A retrospective study[J]. Dermatol Ther, 2021, 34(1):e14649. doi:10.1111/dth.14649
doi: 10.1111/dth.14649 |
[28] | SU M, MIAO F, JIANG S, et al. Role of the p53‑TRPM1/miR‑211‑MMP9 axis in UVB‑induced human melanocyte migration and its potential in repigmentation[J]. Int J Mol Med, 2020, 45(4):1017-1026. |
[29] |
WU C S, HU S C, LAN C C, et al. Low-energy helium-neon laser therapy induces repigmentation and improves the abnormalities of cutaneous microcirculation in segmental-type vitiligo lesions[J]. Kaohsiung J Med Sci, 2008, 24(4):180-189. doi:10.1016/s1607-551x(08)70115-3
doi: 10.1016/s1607-551x(08)70115-3 |
[30] |
YU W T, YU H S, WU C S, et al. Noninvasive cutaneous blood flow as a response predictor for visible light therapy on segmental vitiligo: A prospective pilot study[J]. Br J Dermatol, 2011, 164(4):759-764. doi:10.1111/j.1365-2133.2010.10148.x
doi: 10.1111/j.1365-2133.2010.10148.x |
[31] |
YU S, LAN C E, YU H S. Mechanisms of repigmentation induced by photobiomodulation therapy in vitiligo[J]. Exp Dermatol, 2019,28 ():10-14. doi:10.1111/exd.13823
doi: 10.1111/exd.13823 |
[32] |
PASTORE D, GRECO M, PASSARELLA S. Specific helium-neon laser sensitivity of the purified cytochrome c oxidase[J]. Int J Radiat Biol, 2000, 76(6):863-870. doi:10.1080/09553000050029020
doi: 10.1080/09553000050029020 |
[33] |
LAN C C, WU S B, WU C S, et al. Induction of primitive pigment cell differentiation by visible light (helium-neon laser): A photoacceptor-specific response not replicable by UVB irradiation[J]. J Mol Med (Berl), 2012, 90(3):321-330. doi:10.1007/s00109-011-0822-7
doi: 10.1007/s00109-011-0822-7 |
[34] |
LAN C C, WU C S, CHIOU M H, et al. Low-energy helium-neon laser induces locomotion of the immature melanoblasts and promotes melanogenesis of the more differentiated melanoblasts: Recapitulation of vitiligo repigmentation in vitro[J]. J Invest Dermatol, 2006, 126(9):2119-2126. doi:10.1038/sj.jid.5700372
doi: 10.1038/sj.jid.5700372 |
[35] |
YU H S, WU C S, YU C L, et al. Helium-neon laser irradiation stimulates migration and proliferation in melanocytes and induces repigmentation in segmental-type vitiligo[J]. J Invest Dermatol, 2003, 120(1):56-64. doi:10.1046/j.1523-1747.2003.12011.x
doi: 10.1046/j.1523-1747.2003.12011.x |
[36] | 刘玮, 葛格. 蓝光辐照对皮肤的生物学效应[J]. 临床皮肤科杂志, 2021, 50(3):187-192. |
[37] |
LODI G, DEL R C, NISTICO S P, et al. Blue light-emitting diodes for the treatment of localized vitiligo: A retrospective study[J]. J Cosmet Dermatol, 2023, 22(4):1273-1278. doi:10.1111/jocd.15567
doi: 10.1111/jocd.15567 |
[38] |
MOREIRAS H, O'CONNOR C, BELL M, et al. Visible light and human skin pigmentation: The importance of skin phototype[J]. Exp Dermatol, 2021, 30(9):1324-1331. doi:10.1111/exd.14400
doi: 10.1111/exd.14400 |
[39] |
DUTEIL L, CARDOT-LECCIA N, QUEILLE-ROUSSEL C, et al. Differences in visible light-induced pigmentation according to wavelengths: A clinical and histological study in comparison with UVB exposure[J]. Pigment Cell Melanoma Res, 2014, 27(5):822-826. doi:10.1111/pcmr.12273
doi: 10.1111/pcmr.12273 |
[40] |
OLINSKI L E, LIN E M, OANCEA E. Illuminating insights into opsin 3 function in the skin[J]. Adv Biol Regul, 2020, 75:100668. doi:10.1016/j.jbior.2019.100668
doi: 10.1016/j.jbior.2019.100668 |
[41] |
REGAZZETTI C, SORMANI L, DEBAYLE D, et al. Melanocytes Sense Blue Light and Regulate Pigmentation through Opsin-3[J]. J Invest Dermatol, 2018, 138(1):171-178. doi:10.1016/j.jid.2017.07.833
doi: 10.1016/j.jid.2017.07.833 |
[42] |
WANG Y, LAN Y, LU H. Opsin3 Downregulation Induces Apoptosis of Human Epidermal Melanocytes via Mitochondrial Pathway[J]. Photochem Photobiol, 2020,96(1):83-93. doi:10.1111/php.13178
doi: 10.1111/php.13178 |
[43] |
DONG X, ZENG W, ZHANG W, et al. OPN3 Regulates Melanogenesis in Human Congenital Melanocytic Nevus Cells through Functional Interaction with BRAF(V600E)[J]. J Invest Dermatol, 2022, 142(11):3020-3029. doi:10.1016/j.jid.2022.04.022
doi: 10.1016/j.jid.2022.04.022 |
[44] |
WANG Y, LAN Y, YANG X, et al. TGFbeta2 Upregulates Tyrosinase Activity through Opsin-3 in Human Skin Melanocytes In Vitro[J]. J Invest Dermatol, 2021, 141(11):2679-2689. doi:10.1016/j.jid.2021.01.040
doi: 10.1016/j.jid.2021.01.040 |
[45] |
BUSCONE S, MARDARYEV A N, WESTGATE G E, et al. Cryptochrome 1 is modulated by blue light in human keratinocytes and exerts positive impact on human hair growth[J]. Exp Dermatol, 2021, 30(2):271-277. doi:10.1111/exd.14231
doi: 10.1111/exd.14231 |
[46] |
GAO R, ZHANG X, ZOU K, et al. Cryptochrome 1 activation inhibits melanogenesis and melanosome transport through negative regulation of cAMP/PKA/CREB signaling pathway[J]. Front Pharmacol, 2023, 14:1081030. doi:10.3389/fphar.2023.1081030
doi: 10.3389/fphar.2023.1081030 |
[47] |
BERTOLESI G E, DEBNATH N, HESHAMI N, et al. Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation[J]. Pigment Cell Melanoma Res, 2025, 38(1):e13220. doi:10.1111/pcmr.13220
doi: 10.1111/pcmr.13220 |
[48] |
RAONE B, PATRIZI A, GURIOOLI C, et al. Cutaneous carcinogenic risk evaluation in 375 patients treated with narrowband-UVB phototherapy: A 15-year experience from our Institute[J]. Photodermatol Photoimmunol Photomed, 2018, 34(5):302-306. doi:10.1111/phpp.12382
doi: 10.1111/phpp.12382 |
[49] |
TROVATO E, DRAGOTTO M, CAPALLBO E, et al. Risk of Skin Cancer in Patients with Psoriasis: Single-Center Retrospective Study Comparing Anti-TNFalpha and Phototherapy[J]. J Clin Med, 2024, 13(9):2452. doi:10.3390/jcm13092452
doi: 10.3390/jcm13092452 |
[50] | 王远红, 孙继颖, 张圣燕. 节段型白癜风发病机制及治疗进展[J]. 现代中西医结合杂志, 2023, 32(24):3495-3499. |
[1] | 曹露,赵阳. 皮肤移植治疗稳定期白癜风的研究进展[J]. 实用医学杂志, 2025, 41(2): 300-304. |
[2] | 黄晓婷 唐旭华 毛任翔 李鎏祎 洪春丽 周晖 . 血清可溶性PD⁃L1与白癜风临床相关性研究 [J]. 实用医学杂志, 2023, 39(8): 1040-1044. |
[3] | 林吟 邹东东 黄兆许 吴以龙 . 联动成像模式和亮蓝光成像模式在大肠侧向发育型肿瘤中的临床应用价值 [J]. 实用医学杂志, 2023, 39(4): 487-493. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||