The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (11): 1751-1759.doi: 10.3969/j.issn.1006-5725.2025.11.021
• Reviews • Previous Articles
Shihan CHEN1,Yong JI2,Wei ZHU1()
Received:
2025-02-16
Online:
2025-06-10
Published:
2025-06-19
Contact:
Wei ZHU
E-mail:zhuwei@ ujs.edu.cn;zhuwei@ujs.edu.cn
CLC Number:
Shihan CHEN,Yong JI,Wei ZHU. Research progress of Rho GTPase activating protein for regulator of tumor cell migration[J]. The Journal of Practical Medicine, 2025, 41(11): 1751-1759.
Tab.1
The ARHGAP - related migration mechanisms of various tumor cells in cancers"
肿瘤类型 | 基因名称 | 迁移机制 | 参考文献 |
---|---|---|---|
乳腺癌 | ARHGAP1 | TGF-β信号通路; | [ |
ARHGAP5 | METTL3介导m6A修饰 | [ | |
ARHGAP19 | miR-194调控靶基因 | [ | |
ARHGAP25 | Wnt/β-catenin信号通路 | [ | |
前列腺癌 | ARHGAP1 | hsa-miR-940促进hMSCs的成骨分化 | [ |
ARHGAP5 | hsa_circ_0003258通过miR-653-5p调控靶基因 | [ | |
肺癌 | ARHGAP6 | VEGF的调控STAT3信号通路 | [ |
ARHGAP9 | Wnt/β-连环蛋白信号通路 | [ | |
ARHGAP10 | PI3K/AKT/GSK3β信号通路 | [ | |
ARHGAP25 | HOXA4调控靶基因和Wnt/β-catenin信号通路 | [ | |
结直肠癌 | ARHGAP4 | TGF-β信号通路 | [ |
ARHGAP5 | miR-137调控靶基因 | [ | |
ARHGAP8 | Rho和Rac信号通路 | [ | |
ARHGAP15 | PTEN/AKT/FOXO1信号通路 | [ | |
ARHGAP25 | Wnt/β-连环蛋白信号通路 | [ | |
ARHGAP35 | E3泛素连接酶TRIM65介导泛素化 | [ | |
宫颈癌 | ARHGAP1 | MMP2、ZEB1、CCNB1、Twist、PCNA的调控 | [ |
ARHGAP5 | 乳酸刺激miR-744调节靶基因 | [ | |
ARHGAP30 | F-肌动蛋白/Hippo-YAP信号 | [ | |
胰腺癌 | ARHGAP4 | miR-939-5p调控靶基因 | [ |
ARHGAP30 | β-catenin信号通路 | [ | |
卵巢癌 | ARHGAP5 | lncRNA ZFHX2-AS1与DKC1相互作用靶基因 | [ |
ARHGAP10 | Cdc42活性调控 | [ | |
ARHGAP26 | SMURF 1调控靶基因和β-catenin信号通路 | [ | |
ARHGAP30 | PI3K/AKT/mTOR信号通路 | [ | |
胃癌 | ARHGAP5 | SIRT1与c-JUN的相互作用调节靶基因 | [ |
ARHGAP11A | miR-30c-2-3p调控靶基因 | [ | |
ARHGAP18 | MAPK信号通路 | [ | |
膀胱癌 | ARHGAP5 | CircUBE2K通过miR-516b-5p调控靶基因 | [ |
ARHGAP6 | β-catenin信号通路 | [ | |
鼻咽癌 | ARHGAP12 | 细胞骨架重塑相关蛋白的调控 | [ |
ARHGAP42 | PI3K/AKT信号通路 | [ | |
肝癌 | ARHGAP7 | HBc参与miR-382-5p调控靶基因 | [ |
ARHGAP20 | PI3K/AKT信号通路 | [ | |
ARHGAP24 | β-catenin信号通路 | [ | |
骨肉瘤 | ARHGAP24 | circ-LOM7靶向miR-21-5p调控的靶基因 | [ |
黑色素瘤 | ARHGAP29 | EHMT2通过靶基因调节RhoA通路 | [ |
1 |
HAN S, JIN X, HU T,et al. ARHGAP25 suppresses the development of breast cancer by an ARHGAP25/Wnt/ASCL2 feedback loop[J]. Carcinogenesis, 2023, 44(5): 369-382. doi:10.1093/carcin/bgad042
doi: 10.1093/carcin/bgad042 |
2 |
CITI S, GUERRERA D, SPADARO D,et al. Epithelial junctions and Rho family GTPases: The zonular signalosome[J]. Small GTPases, 2014, 5(4): 1-15. doi:10.4161/21541248.2014.973760
doi: 10.4161/21541248.2014.973760 |
3 |
JANSEN S, GOSENS R, WIELAND T,et al. Paving the Rho in cancer metastasis: Rho GTPases and beyond[J]. Pharmacol Ther, 2018, 183: 1-21. doi:10.1016/j.pharmthera.2017.09.002
doi: 10.1016/j.pharmthera.2017.09.002 |
4 |
HASHIMOTO K, OCHI H, SUNAMURA S,et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A[J]. Proc Natl Acade Sci U S A, 2018, 115(9): 2204-2209. doi:10.1073/pnas.1717363115
doi: 10.1073/pnas.1717363115 |
5 |
REIS L M, CHASSAING N, BARDAKJIAN T,et al. ARHGAP35 is a novel factor disrupted in human developmental eye phenotypes[J]. Eur J hum genet, 2023, 31(3): 363-367. doi:10.1038/s41431-022-01246-z
doi: 10.1038/s41431-022-01246-z |
6 | 谢崇平,刘立威,房锦存,等. ARHGAP21通过失活WNT信号通路抑制非小细胞肺癌中的上皮间质转化[J]. 南方医科大学学报, 2023, 43(8): 1322-1332. |
7 | STREETS A J, PROSSEDA P P, ONG A C. Polycystin-1 regulates ARHGAP35-dependent centrosomal RhoA activation and ROCK signaling[J]. JCI Insight, 2020, 5(16): e135385, 135385. |
8 |
LAY A J, COLEMAN P R, FORMAZ‐PRESTON A,et al. ARHGAP18: A Flow‐Responsive Gene That Regulates Endothelial Cell Alignment and Protects Against Atherosclerosis[J]. J Am Heart Assoc, 2019, 8(2): e010057. doi:10.1161/jaha.118.010057
doi: 10.1161/jaha.118.010057 |
9 |
LIU G, LI J, ZHANG C Y,et al. ARHGAP20 Expression Inhibited HCC Progression by Regulating the PI3K-AKT Signaling Pathway[J]. J Hepatocell Carcinoma, 2021, 8: 271-284. doi:10.2147/jhc.s298554
doi: 10.2147/jhc.s298554 |
10 | STREETS A J, PROSSEDA P P, ONG A C. Polycystin-1 regulates ARHGAP35-dependent centrosomal RhoA activation and ROCK signaling[J]. JCI Insight, 2020, 5(16): e135385, 135385. |
11 |
SVENSMARK J H, BRAKEBUSCH C. Rho GTPases in cancer: friend or foe?[J]. Oncogene, 2019, 38(50): 7447-7456. doi:10.1038/s41388-019-0963-7
doi: 10.1038/s41388-019-0963-7 |
12 |
LIU W, XIA K, ZHENG D,et al. Construction of a prognostic risk score model based on the ARHGAP family to predict the survival of osteosarcoma[J]. BMC Cancer, 2023, 23(1): 1179. doi:10.1186/s12885-023-11673-w
doi: 10.1186/s12885-023-11673-w |
13 |
LI J P, LIU Y, YIN Y H. ARHGAP1 overexpression inhibits proliferation, migration and invasion of C-33A and SiHa cell lines[J]. OncoTarget Therap, 2017, 10: 691-701. doi:10.2147/ott.s112223
doi: 10.2147/ott.s112223 |
14 |
QI L, SUN B, YANG B,et al. circRNA RPPH1 Facilitates the Aggravation of Breast Cancer Development by Regulating miR-542-3p/ARHGAP1 Pathway[J]. Cancer Biother Radiophar, 2022, 37(8): 708-719. doi:10.1089/cbr.2020.4381
doi: 10.1089/cbr.2020.4381 |
15 |
JOHNSTONE C N, CASTELLVÍ-BEL S, CHANG L M,et al. ARHGAP8 is a novel member of the RHOGAP family related to ARHGAP1/CDC42GAP/p50RHOGAP: mutation and expression analyses in colorectal and breast cancers[J]. Gene, 2004, 336(1): 59-71. doi:10.1016/j.gene.2004.01.025
doi: 10.1016/j.gene.2004.01.025 |
16 |
YANG C, WU S, MOU Z, et al. Transcriptomic Analysis Identified ARHGAP Family as a Novel Biomarker Associated With Tumor-Promoting Immune Infiltration and Nanomechanical Characteristics in Bladder Cancer[J]. Front Cell Develop Biol, 2021, 9: 657219. doi:10.3389/fcell.2021.657219
doi: 10.3389/fcell.2021.657219 |
17 |
KIM T Y, JONG H S, SONG S H, et al. Transcriptional silencing of the DLC-1 tumor suppressor gene by epigenetic mechanism in gastric cancer cells[J]. Oncogene, 2003, 22(25): 3943-3951. doi:10.1038/sj.onc.1206573
doi: 10.1038/sj.onc.1206573 |
18 | ULLMANNOVA V, POPESCU N C. Expression profile of the tumor suppressor genes DLC-1 and DLC-2 in solid tumors[J]. Int J Oncol, 2006, 29(5): 1127-1132. |
19 | CHEN W X, LOU M, CHENG L,et al. Bioinformatics analysis of potential therapeutic targets among ARHGAP genes in breast cancer[J]. Oncol Lett, 2019, 18(6): 6017-6025. |
20 |
GÖKMEN-POLAR Y, TRUE J D, VIETH E,et al. Quantitative phosphoproteomic analysis identifies novel functional pathways of tumor suppressor DLC1 in estrogen receptor positive breast cancer[J]. PloS One, 2018, 13(10): e0204658. doi:10.1371/journal.pone.0204658
doi: 10.1371/journal.pone.0204658 |
21 |
TAKAGI K, MIKI Y, ONODERA Y,et al. ARHGAP15 in Human Breast Carcinoma: A Potent Tumor Suppressor Regulated by Androgens[J]. Int J Mol Sci, 2018, 19(3): 804. doi:10.3390/ijms19030804
doi: 10.3390/ijms19030804 |
22 |
AMIN E, JAISWAL M, DEREWENDA U,et al. Deciphering the Molecular and Functional Basis of RHOGAP Family Proteins: A SYSTEMATIC APPROACH TOWARD SELECTIVE INACTIVATION OF RHO FAMILY PROTEINS[J]. J Biol Chem, 2016, 291(39): 20353-20371. doi:10.1074/jbc.m116.736967
doi: 10.1074/jbc.m116.736967 |
23 |
MOSADDEGHZADEH N, AHMADIAN M R. The RHO Family GTPases: Mechanisms of Regulation and Signaling[J]. Cells, 2021, 10(7): 1831. doi:10.3390/cells10071831
doi: 10.3390/cells10071831 |
24 |
LIU Y, SU Z, TAVANA O,et al. Understanding the complexity of p53 in a new era of tumor suppression[J]. Cancer Cell, 2024, 42(6): 946-967. doi:10.1016/j.ccell.2024.04.009
doi: 10.1016/j.ccell.2024.04.009 |
25 |
WANG J, QIAN J, HU Y,et al. ArhGAP30 promotes p53 acetylation and function in colorectal cancer[J]. Nat Communicat, 2014, 5: 4735. doi:10.1038/ncomms5735
doi: 10.1038/ncomms5735 |
26 |
LIAO Y C, LO S H. Deleted in liver cancer-1 (DLC-1): A tumor suppressor not just for liver[J]. Int J Biochem Cell Biol, 2008, 40(5): 843-847. doi:10.1016/j.biocel.2007.04.008
doi: 10.1016/j.biocel.2007.04.008 |
27 |
LI Y, CHEN B, ZHAO J,et al. HNRNPL Circularizes ARHGAP35 to Produce an Oncogenic Protein[J]. Adv Sci, 2021, 8(13): 2001701. doi:10.1002/advs.202001701
doi: 10.1002/advs.202001701 |
28 |
YANG H, HONG D, CHO S Y,et al. RhoGAP domain-containing fusions and PPAPDC1A fusions are recurrent and prognostic in diffuse gastric cancer[J]. Nat Communicat, 2018, 9(1): 4439. doi:10.1038/s41467-018-06747-4
doi: 10.1038/s41467-018-06747-4 |
29 |
ANG B K, LIM C Y, KOH S S,et al. ArhGAP9, a novel MAP kinase docking protein, inhibits Erk and p38 activation through WW domain binding[J]. J Mol Signaling, 2007, 2: 1. doi:10.1186/1750-2187-2-1
doi: 10.1186/1750-2187-2-1 |
30 |
RADU M, RAWAT S J, BEESER A,et al. ArhGAP15, a Rac-specific GTPase-activating protein, plays a dual role in inhibiting small GTPase signaling[J]. J Biol Chem, 2013, 288(29): 21117-21125. doi:10.1074/jbc.m113.459719
doi: 10.1074/jbc.m113.459719 |
31 |
BEMENT W M, GORYACHEV A B, MILLER A L,et al. Patterning of the cell cortex by Rho GTPases[J]. Nat Rev Mol Cell Biol, 2024, 25(4): 290-308. doi:10.1038/s41580-023-00682-z
doi: 10.1038/s41580-023-00682-z |
32 |
GARDEL M L, SCHNEIDER I C, ARATYN-SCHAUS Y,et al. Mechanical integration of actin and adhesion dynamics in cell migration[J]. Ann Rev Cell Develop Biol, 2010, 26: 315-333. doi:10.1146/annurev.cellbio.011209.122036
doi: 10.1146/annurev.cellbio.011209.122036 |
33 |
GEN Y, YASUI K,ZEN K,et al. A novel amplification target, ARHGAP5, promotes cell spreading and migration by negatively regulating RhoA in Huh-7 hepatocellular carcinoma cells[J]. Cancer Lett, 2009, 275(1): 27-34. doi:10.1016/j.canlet.2008.09.036
doi: 10.1016/j.canlet.2008.09.036 |
34 |
KASUYA K, NAGAKAWA Y, HOSOKAWA Y, et al. RhoA activity increases due to hypermethylation of ARHGAP28 in a highly liver-metastatic colon cancer cell line[J]. Biomed Rep, 2016, 4(3): 335-339. doi:10.3892/br.2016.582
doi: 10.3892/br.2016.582 |
35 |
KAGAWA Y, MATSUMOTO S, KAMIOKA Y, et al. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo[J]. PloS One, 2013, 8(12): e83629. doi:10.1371/journal.pone.0083629
doi: 10.1371/journal.pone.0083629 |
36 |
SUN Z, ZHANG B, WANG C,et al. Forkhead box P3 regulates ARHGAP15 expression and affects migration of glioma cells through the Rac1 signaling pathway[J]. Cancer Sci, 2017, 108(1): 61-72. doi:10.1111/cas.13118
doi: 10.1111/cas.13118 |
37 |
WONG D C P, PAN C Q, ER S Y,et al. The scaffold RhoGAP protein ARHGAP8/BPGAP1 synchronizes Rac and Rho signaling to facilitate cell migration[J]. Mol Biol Cell, 2023, 34(3): ar13. doi:10.1091/mbc.e21-03-0099
doi: 10.1091/mbc.e21-03-0099 |
38 |
GUAN X, GUAN X, DONG C,et al. Rho GTPases and related signaling complexes in cell migration and invasion[J]. Exp Cell Res, 2020, 388(1): 111824. doi:10.1016/j.yexcr.2020.111824
doi: 10.1016/j.yexcr.2020.111824 |
39 |
LUO N, GUO J, CHEN L,et al. ARHGAP10, downregulated in ovarian cancer, suppresses tumorigenicity of ovarian cancer cells[J]. Cell Death Dis, 2016, 7(3): e2157. doi:10.1038/cddis.2015.401
doi: 10.1038/cddis.2015.401 |
40 |
ASGARI R, VAISI-RAYGANI A, ALEAGHA M S E,et al. CD147 and MMPs as key factors in physiological and pathological processes[J]. Biomed Pharmacother, 2023, 157: 113983. doi:10.1016/j.biopha.2022.113983
doi: 10.1016/j.biopha.2022.113983 |
41 |
XU K, LIU B, MA Y. The tumor suppressive roles of ARHGAP25 in lung cancer cells[J]. OncoTarget Ther, 2019, 12: 6699-6710. doi:10.2147/ott.s207540
doi: 10.2147/ott.s207540 |
42 |
LIU L, XIE D, XIE H,et al. ARHGAP10 Inhibits the Proliferation and Metastasis of CRC Cells via Blocking the Activity of RhoA/AKT Signaling Pathway[J]. OncoTarget Ther, 2019, 12: 11507-11516. doi:10.2147/ott.s222564
doi: 10.2147/ott.s222564 |
43 |
BIGARELLA C L, BORGES L, COSTA F F,et al. ARHGAP21 modulates FAK activity and impairs glioblastoma cell migration[J]. Biochimica Et Biophysica Acta, 2009, 1793(5): 806-816. doi:10.1016/j.bbamcr.2009.02.010
doi: 10.1016/j.bbamcr.2009.02.010 |
44 |
BOESCH M, SPIZZO G, SEEBER A. Concise Review: Aggressive Colorectal Cancer: Role of Epithelial Cell Adhesion Molecule in Cancer Stem Cells and Epithelial-to-Mesenchymal Transition[J]. Stem Cell Trans Med, 2018, 7(6): 495-501. doi:10.1002/sctm.17-0289
doi: 10.1002/sctm.17-0289 |
45 |
ZHENG L, CAI X, SONG J,et al. MicroRNA-30c-2-3p represses malignant progression of gastric adenocarcinoma cells via targeting ARHGAP11A[J]. Bioengineered, 2022, 13(6): 14534-14544. doi:10.1080/21655979.2022.2090222
doi: 10.1080/21655979.2022.2090222 |
46 |
ZHANG H, TANG Q F, SUN M Y,et al. ARHGAP9 suppresses the migration and invasion of hepatocellular carcinoma cells through up-regulating FOXJ2/E-cadherin[J]. Cell Death Dis, 2018, 9(9): 916. doi:10.1038/s41419-018-0976-0
doi: 10.1038/s41419-018-0976-0 |
47 |
PANG X, HE X, QIU Z,et al. Targeting integrin pathways: mechanisms and advances in therapy[J]. Signal Trans Target Ther, 2023, 8(1): 1. doi:10.1038/s41392-022-01259-6
doi: 10.1038/s41392-022-01259-6 |
48 |
FURUKAWA Y, KAWASOE T, DAIGO Y,et al. Isolation of a novel human gene, ARHGAP9, encoding a rho-GTPase activating protein[J]. Biochem Biophys Res Communicat, 2001, 284(3): 643-649. doi:10.1006/bbrc.2001.5022
doi: 10.1006/bbrc.2001.5022 |
49 |
TONG Y, CHENG P S W, OR C S,et al. Escape from cell-cell and cell-matrix adhesion dependence underscores disease progression in gastric cancer organoid models[J]. Gut, 2023, 72(2): 242-255. doi:10.1136/gutjnl-2022-327121
doi: 10.1136/gutjnl-2022-327121 |
50 |
SHI F, WU J, JIA Q,et al. Relationship between the expression of ARHGAP25 and RhoA in non-small cell lung cancer and vasculogenic mimicry[J]. BMC Pulmonary Med, 2022, 22(1): 377. doi:10.1186/s12890-022-02179-5
doi: 10.1186/s12890-022-02179-5 |
51 | 王畏,张新鑫. TMSB10促进胃癌细胞增殖及糖酵解:基于激活AMPK/mTOR信号通路[J]. 实用医学杂志, 2024, 40(11): 1519-1525. |
52 | 冯智明,尤宜洁. circTCF25抑制mTOR信号通路对TNF-α诱导血管平滑肌细胞增殖和迁移的影响[J]. 实用医学杂志, 2021, 37(12): 1544-1548. |
53 |
PAN S, DENG Y, FU J, et al. Tumor Suppressive Role of ARHGAP17 in Colon Cancer Through Wnt/β-Catenin Signaling[J]. Cell Physiol Biochem, 2018, 46(5): 2138-2148. doi:10.1159/000489543
doi: 10.1159/000489543 |
54 |
SHEN Y, XU L, NING Z,et al. ARHGAP4 regulates the cell migration and invasion of pancreatic cancer by the HDAC2/β-catenin signaling pathway[J]. Carcinogenesis, 2019, 40(11): 1405-1414. doi:10.1093/carcin/bgz067
doi: 10.1093/carcin/bgz067 |
55 |
GUO Q, XIONG Y, SONG Y,et al. ARHGAP17 suppresses tumor progression and up-regulates P21 and P27 expression via inhibiting PI3K/AKT signaling pathway in cervical cancer[J]. Gene, 2019, 692: 9-16. doi:10.1016/j.gene.2019.01.004
doi: 10.1016/j.gene.2019.01.004 |
56 |
MOTIZUKI M, KOINUMA D, YOKOYAMA T,et al. TGF-β-induced cell motility requires downregulation of ARHGAPs to sustain Rac1 activity[J]. J Biol Chem, 2021, 296: 100545. doi:10.1016/j.jbc.2021.100545
doi: 10.1016/j.jbc.2021.100545 |
57 |
SONG W, CHEN J, LI S,et al. Rho GTPase Activating Protein 9 (ARHGAP9) in Human Cancers[J]. Recent Patent Anti-Cancer Drug Dis, 2022, 17(1): 55-65. doi:10.2174/1574892816666210806155754
doi: 10.2174/1574892816666210806155754 |
58 |
WEN X, WAN J, HE Q,et al. p190A inactivating mutations cause aberrant RhoA activation and promote malignant transformation via the Hippo-YAP pathway in endometrial cancer[J]. Signal Trans Target Ther, 2020, 5(1): 81. doi:10.1038/s41392-020-0170-6
doi: 10.1038/s41392-020-0170-6 |
59 |
GÉCI I, BOBER P, FILOVÁ E,et al. The Role of ARHGAP1 in Rho GTPase Inactivation during Metastasizing of Breast Cancer Cell Line MCF-7 after Treatment with Doxorubicin[J]. Int J Mol Sci, 2023, 24(14): 11352. doi:10.3390/ijms241411352
doi: 10.3390/ijms241411352 |
60 |
LI Y, WANG N X, YIN C,et al. RNA Editing Enzyme ADAR1 Regulates METTL3 in an Editing Dependent Manner to Promote Breast Cancer Progression via METTL3/ARHGAP5/YTHDF1 Axis[J]. Int J Mol Sci, 2022, 23(17): 9656. doi:10.3390/ijms23179656
doi: 10.3390/ijms23179656 |
61 |
VAJEN B, GREIWE L, SCHÄFFER V,et al. MicroRNA-192-5p inhibits migration of triple negative breast cancer cells and directly regulates Rho GTPase activating protein 19[J]. Genes, Chromosomes Cancer, 2021, 60(11): 733-742. doi:10.1002/gcc.22982
doi: 10.1002/gcc.22982 |
62 |
WANG J, TIAN X, HAN R,et al. Downregulation of miR-486-5p contributes to tumor progression and metastasis by targeting protumorigenic ARHGAP5 in lung cancer[J]. Oncogene, 2014, 33(9): 1181-1189. doi:10.1038/onc.2013.42
doi: 10.1038/onc.2013.42 |
63 |
CHEN W, TAN M, YU C,et al. ARHGAP6 inhibits bladder cancer cell viability, migration, and invasion via β-catenin signaling and enhances mitomycin C sensitivity[J]. Human Cell, 2023, 36(2): 786-797. doi:10.1007/s13577-023-00860-3
doi: 10.1007/s13577-023-00860-3 |
64 |
SONG W, WU X, CHENG C,et al. ARHGAP9 knockdown promotes lung adenocarcinoma metastasis by activating Wnt/β-catenin signaling pathway via suppressing DKK2[J]. Genomics, 2023, 115(5): 110684. doi:10.1016/j.ygeno.2023.110684
doi: 10.1016/j.ygeno.2023.110684 |
65 |
LIN L L, YANG F, ZHANG D H,et al. ARHGAP10 inhibits the epithelial-mesenchymal transition of non-small cell lung cancer by inactivating PI3K/Akt/GSK3β signaling pathway[J]. Cancer Cell Int, 2021, 21(1): 320. doi:10.1186/s12935-021-02022-7
doi: 10.1186/s12935-021-02022-7 |
66 |
JIANG S, TANG Y, WANG X,et al. ARHGAP4 promotes colon cancer metastasis through the TGF-β signaling pathway and may be associated with T cell exhaustion[J]. Biochem Biophy Res Comm, 2024, 722: 150172. doi:10.1016/j.bbrc.2024.150172
doi: 10.1016/j.bbrc.2024.150172 |
67 |
TIAN T, CHEN Z H, ZHENG Z,et al. Investigation of the role and mechanism of ARHGAP5-mediated colorectal cancer metastasis[J]. Theranostics, 2020, 10(13): 5998-6010. doi:10.7150/thno.43427
doi: 10.7150/thno.43427 |
68 |
PAN S, DENG Y, FU J,et al. Decreased expression of ARHGAP15 promotes the development of colorectal cancer through PTEN/AKT/FOXO1 axis[J]. Cell Death Dis, 2018, 9(6): 673. doi:10.1038/s41419-018-0707-6
doi: 10.1038/s41419-018-0707-6 |
69 |
TAO L, ZHU Y, GU Y,et al. ARHGAP25: A negative regulator of colorectal cancer (CRC) metastasis via the Wnt/β-catenin pathway[J]. Eur J Pharmacol, 2019, 858: 172476. doi:10.1016/j.ejphar.2019.172476
doi: 10.1016/j.ejphar.2019.172476 |
70 |
CHEN D, LI Y, ZHANG X,et al. Ubiquitin ligase TRIM65 promotes colorectal cancer metastasis by targeting ARHGAP35 for protein degradation[J]. Oncogene, 2019, 38(37): 6429-6444. doi:10.1038/s41388-019-0891-6
doi: 10.1038/s41388-019-0891-6 |
71 |
LI C, JIA L, YU Y,et al. Lactic acid induced microRNA-744 enhances motility of SiHa cervical cancer cells through targeting ARHGAP5[J]. Chem Biol Interact, 2019, 298: 86-95. doi:10.1016/j.cbi.2018.10.027
doi: 10.1016/j.cbi.2018.10.027 |
72 |
WU A, LIN L, LI X,et al. Overexpression of ARHGAP30 suppresses growth of cervical cancer cells by downregulating ribosome biogenesis[J]. Cancer Sci, 2021, 112(11): 4515-4525. doi:10.1111/cas.15130
doi: 10.1111/cas.15130 |
73 |
SHEN Y, CHEN G, GAO H,et al. miR-939-5p Contributes to the Migration and Invasion of Pancreatic Cancer by Targeting ARHGAP4[J]. OncoTarget Ther, 2020, 13: 389-399. doi:10.2147/ott.s227644
doi: 10.2147/ott.s227644 |
74 |
ZHOU Y, HUA Z, ZHU Y,et al. Upregulation of ARHGAP30 attenuates pancreatic cancer progression by inactivating the β-catenin pathway[J]. Cancer Cell Int, 2020, 20: 225. doi:10.1186/s12935-020-01288-7
doi: 10.1186/s12935-020-01288-7 |
75 |
DONG Y, ZHANG Z, HUANG H,et al. ZFHX2-AS1 interacts with DKC1 to regulate ARHGAP5 pseudouridylation and suppress ovarian cancer progression[J]. Cell Signal, 2024, 124: 111441. doi:10.1016/j.cellsig.2024.111441
doi: 10.1016/j.cellsig.2024.111441 |
76 |
CHEN X, CHEN S, LI Y,et al. SMURF1-mediated ubiquitination of ARHGAP26 promotes ovarian cancer cell invasion and migration[J]. Exp Mol Med, 2019, 51(4): 1-12. doi:10.1038/s12276-019-0236-0
doi: 10.1038/s12276-019-0236-0 |
77 |
CHU X, LOU J, YI Y,et al. Knockdown of ARHGAP30 inhibits ovarian cancer cell proliferation, migration, and invasiveness by suppressing the PI3K/AKT/mTOR signaling pathway[J]. Eur J Histochem, 2023, 67(2): 3653. doi:10.4081/ejh.2023.3653
doi: 10.4081/ejh.2023.3653 |
78 |
DONG G, WANG B, AN Y,et al. SIRT1 suppresses the migration and invasion of gastric cancer by regulating ARHGAP5 expression[J]. Cell Death Dis, 2018, 9(10): 977. doi:10.1038/s41419-018-1033-8
doi: 10.1038/s41419-018-1033-8 |
79 |
LI Y, JI S, FU L,et al. Over-expression of ARHGAP18 suppressed cell proliferation, migration, invasion, and tumor growth in gastric cancer by restraining over-activation of MAPK signaling pathways[J]. Onco Target Ther, 2018, 11: 279-290. doi:10.2147/ott.s130255
doi: 10.2147/ott.s130255 |
80 |
YANG C, MOU Z, WU S,et al. High-throughput sequencing identified circular RNA circUBE2K mediating RhoA associated bladder cancer phenotype via regulation of miR-516b-5p/ARHGAP5 axis[J]. Cell Death Dis, 2021, 12(8): 719. doi:10.1038/s41419-021-03977-1
doi: 10.1038/s41419-021-03977-1 |
81 |
FAN C, QU H, XIONG F,et al. CircARHGAP12 promotes nasopharyngeal carcinoma migration and invasion via ezrin-mediated cytoskeletal remodeling[J]. Cancer Lett, 2021, 496: 41-56. doi:10.1016/j.canlet.2020.09.006
doi: 10.1016/j.canlet.2020.09.006 |
82 |
HU Q, LIN X, DING L,et al. ARHGAP42 promotes cell migration and invasion involving PI3K/Akt signaling pathway in nasopharyngeal carcinoma[J]. Cancer Med, 2018, 7(8): 3862-3874. doi:10.1002/cam4.1552
doi: 10.1002/cam4.1552 |
83 |
DU J, BAI F, ZHAO P,et al. Hepatitis B core protein promotes liver cancer metastasis through miR-382-5p/DLC-1 axis[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(1): 1-11. doi:10.1016/j.bbamcr.2017.09.020
doi: 10.1016/j.bbamcr.2017.09.020 |
84 |
YANG W, WANG B, YU Q,et al. ARHGAP24 represses β-catenin transactivation-induced invasiveness in hepatocellular carcinoma mainly by acting as a GTPase-independent scaffold[J]. Theranostic, 2022, 12(14): 6189-6206. doi:10.7150/thno.72134
doi: 10.7150/thno.72134 |
85 |
LUO A, LIU H, HUANG C,et al. Exosome-transmitted circular RNA circ-LMO7 facilitates the progression of osteosarcoma by regulating miR-21-5p/ARHGAP24 axis[J]. Cancer Biol Ther, 2024, 25(1): 2343450. doi:10.1080/15384047.2024.2343450
doi: 10.1080/15384047.2024.2343450 |
86 |
LI Y, ZHU T, YANG J,et al. EHMT2 promotes tumorigenesis in GNAQ/11-mutant uveal melanoma via ARHGAP29-mediated RhoA pathway[J]. Acta Pharmaceutica Sinica B, 2024, 14(3): 1187-1203. doi:10.1016/j.apsb.2023.12.002
doi: 10.1016/j.apsb.2023.12.002 |
87 |
WANG D, QIAN X, SANCHEZ-SOLANA B,et al. Cancer-Associated Point Mutations in the DLC1 Tumor Suppressor and Other Rho-GAPs Occur Frequently and Are Associated with Decreased Function[J]. Cancer Res, 2020, 80(17): 3568-3579. doi:10.1158/0008-5472.can-19-3984
doi: 10.1158/0008-5472.can-19-3984 |
88 |
KEMALADEWI D U, BASSI P S, ERWOOD S,et al. A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene[J]. Nature, 2019, 572(7767): 125-130. doi:10.1038/s41586-019-1430-x
doi: 10.1038/s41586-019-1430-x |
[1] | Aitao LIN,Zhimin HUANG,Zhiying ZHANG,Tingna FU,Liangxi LU,Xiaoyu LIU,Yini JIANG,Leilei ZHAO,Jinyu. WU. MiRNA-155-5p aggravates renal injury in lupus nephritis by targeting OCS1 to regulate the JAK2/STAT3 signaling pathway [J]. The Journal of Practical Medicine, 2025, 41(9): 1285-1292. |
[2] | Mei CHEN,Zongzhi LI,Xuewei QIN,Limin WANG,LI ZHENG. Protective effect of LncRNA MEG3 on diabetic retinopathy in rats by regulating COX⁃2/PGE2/VEGF signaling pathway [J]. The Journal of Practical Medicine, 2025, 41(9): 1319-1326. |
[3] | Haixia YANG,Menglu SUN,Xiaosha ZHOU,Yaxuan HAN,Baolong REN,Jianying LI,Yi LI. Application of optical surface monitoring system in intensity⁃modulated radiotherapy for thoracic tumors [J]. The Journal of Practical Medicine, 2025, 41(9): 1345-1351. |
[4] | Liangxi LU,Hong SHI,Zhimin HUANG,Jie LU,Wenjie. WANG. Exploring mechanism of TLR4/NF⁃κB⁃NLRP3 inflammasome signaling pathway in experimental autoimmune prostatitis rats [J]. The Journal of Practical Medicine, 2025, 41(6): 800-805. |
[5] | Haoliang DUAN,Yuhua RU,Jia. CHEN. New targets for the treatment of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation [J]. The Journal of Practical Medicine, 2025, 41(5): 634-640. |
[6] | Shuo SUN,Wenjie ZHANG,Yi ZHAO,Youzhi. SUN. Research progress on circadian rhythm genes regulating digestive system tumors and the intervention of traditional Chinese medicine [J]. The Journal of Practical Medicine, 2025, 41(5): 648-656. |
[7] | Wei WANG,Min WANG,Minmin CHENG,Tingting. ZHANG. Impacts of safflower polysaccharide on tumor growth and PI3K/Akt/mTOR signal pathway in mice with colorectal cancer [J]. The Journal of Practical Medicine, 2025, 41(5): 670-675. |
[8] | Hongyan BIAN,Shu ZHANG,Shanshan MENG,Ying WEI. Effect of pomegranate peel polyphenols on the malignant biological behavior of colon cancer cells by regulating the miR⁃138⁃5p/HIF⁃1α pathway [J]. The Journal of Practical Medicine, 2025, 41(5): 676-682. |
[9] | Zhizhou XIAO,Ying HUANG,Huawei. BIAN. To investigate the effect of aloperine on bone metabolism in osteoporotic mice based on autophagy and apoptosis mediated by Wnt/β⁃catenin signaling pathway [J]. The Journal of Practical Medicine, 2025, 41(4): 500-508. |
[10] | Dengxinjie SHI,Hongjin SHI,Nan ZHANG,Shi FU,Qun WANG,Haonan DONG,Jiansong WANG,Haidan LI,Haifeng. WANG. The biological role of YTHDF2 and its application in tumors [J]. The Journal of Practical Medicine, 2025, 41(4): 615-620. |
[11] | Rongxin LI,Li HUANG,Yueyang ZENG,Shuhui ZHANG,Yiran CHEN,Yuli LIU,Tieming. MA. Exploring the mechanism of electroacupuncture to improve cognitiveimpairment in alzheimer′s disease model rats based on NF⁃κB/NLRP3/Caspase⁃1 signaling pathway [J]. The Journal of Practical Medicine, 2025, 41(3): 322-329. |
[12] | Jiahao CHEN,Yong HUANG,Ruibing FENG,Xiaofeng DUAN,Gang WU,Yizheng HUANG,Haitao ZHANG,Chao LI,Yinshuai DING,Hao. HU. Treatment effect and safety analysis of intraspinal tumor under 3D microscope [J]. The Journal of Practical Medicine, 2025, 41(3): 371-378. |
[13] | Yiyang ZHAI,Yunyi MA,Junying ZHAI,Hongli NIU,Ying. WANG. The relationship between tumor necrosis factor alpha inducible protein 8 family members 2, cell proliferation nuclear antigen expression levels, and clinical pathological parameters and prognosis in endometrial cancer tissue [J]. The Journal of Practical Medicine, 2025, 41(3): 379-384. |
[14] | Huiling CAO,Jie ZHANG,Xiaofei ZHU,Shining QIAN,Yunfeng. CHEN. Study on the mechanism of tetramethylpyrazine pretreatment umbilical cord mesenchymal stem cell transplantation in the treatment of ischemic stroke [J]. The Journal of Practical Medicine, 2025, 41(2): 178-185. |
[15] | Qiang FU,Zhongqi LU,Ying CHANG,Tiefeng JIN,Meihua. ZHANG. Research progress on the antitumor effects of immune checkpoint inhibitors [J]. The Journal of Practical Medicine, 2025, 41(2): 288-293. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||