The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (9): 1320-1323.doi: 10.3969/j.issn.1006-5725.2024.09.024
• Reviews • Previous Articles Next Articles
Jing YI1,Hong GAO2(),Sisi. PAN3
Received:
2023-12-11
Online:
2024-05-10
Published:
2024-05-15
Contact:
Hong GAO
E-mail:anesth@qq.com
CLC Number:
Jing YI,Hong GAO,Sisi. PAN. Research progress in the effects of microRNAs on cardiac electrophysiological properties[J]. The Journal of Practical Medicine, 2024, 40(9): 1320-1323.
1 | PECHA S, KIRCHHOF P, REISSMANN B. Perioperative Arrhythmias[J]. Dtsch Arztebl Int, 2023,120(33/34): 564-574. |
2 |
THOMPSON A, BALSER J R. Perioperative cardiac arrhythmias[J]. Br J Anaesth, 2004,93(1): 86-94. doi:10.1093/bja/aeh166
doi: 10.1093/bja/aeh166 |
3 |
YANG D, DESCHÊNES I, FU J. Multilayer control of cardiac electrophysiology by microRNAs[J]. J Mol Cell Cardiol, 2022,166: 107-115. doi:10.1016/j.yjmcc.2022.02.007
doi: 10.1016/j.yjmcc.2022.02.007 |
4 |
SURINA S, FONTANELLA R A, SCISCIOLA L, et al. miR-21 in Human Cardiomyopathies[J]. Front Cardiovasc Med, 2021,8: 767064. doi:10.3389/fcvm.2021.767064
doi: 10.3389/fcvm.2021.767064 |
5 |
ZENG Y, WU N, ZHANG Z, et al. Non-coding RNA and arrhythmias: expression, function, and molecular mechanism[J]. Europace, 2023,25(4):1296-1308. doi:10.1093/europace/euad047
doi: 10.1093/europace/euad047 |
6 |
VARRÓ A, TOMEK J, NAGY N, et al. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior[J]. Physiol Rev, 2021,101(3): 1083-1176. doi:10.1152/physrev.00024.2019
doi: 10.1152/physrev.00024.2019 |
7 |
KANG G, XIE A, LIU H, et al. MIR448 antagomir reduces arrhythmic risk after myocardial infarction by upregulating the cardiac sodium channel[J]. JCI Insight, 2020,5(23):e140759. doi:10.1172/jci.insight.140759
doi: 10.1172/jci.insight.140759 |
8 |
PETKOVA M, ATKINSON A J, YANNI J, et al. Identification of Key Small Non-Coding MicroRNAs Controlling Pacemaker Mechanisms in the Human Sinus Node[J]. J Am Heart Assoc, 2020,9(20): e16590. doi:10.1161/jaha.120.016590
doi: 10.1161/jaha.120.016590 |
9 |
LIU X, ZHANG Y, DU W, et al. MiR-223-3p as a Novel MicroRNA Regulator of Expression of Voltage-Gated K+ Channel Kv4.2 in Acute Myocardial Infarction[J]. Cell Physiol Biochem, 2016,39(1): 102-114. doi:10.1159/000445609
doi: 10.1159/000445609 |
10 |
MATKOVICH S J, WANG W, TU Y, et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts[J]. Circ Res, 2010,106(1): 166-175. doi:10.1161/circresaha.109.202176
doi: 10.1161/circresaha.109.202176 |
11 |
LU Y, ZHANG Y, WANG N, et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation[J]. Circulation, 2010: 122(23):2378-2387. doi:10.1161/circulationaha.110.958967
doi: 10.1161/circulationaha.110.958967 |
12 |
LING T, WANG X, CHAI Q, et al. Regulation of cardiac CACNB2 by microRNA-499: Potential role in atrial fibrillation[J]. BBA Clin, 2017,7: 78-84. doi:10.1016/j.bbacli.2017.02.002
doi: 10.1016/j.bbacli.2017.02.002 |
13 |
JIA X, ZHENG S, XIE X, et al. MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expression: an atrial tachypacing rabbit model[J]. PLoS One, 2013,8(12): e85639. doi:10.1371/journal.pone.0085639
doi: 10.1371/journal.pone.0085639 |
14 |
LI N, ZHOU H, TANG Q. miR-133: A Suppressor of Cardiac Remodeling?[J]. Front Pharmacol, 2018,9: 903. doi:10.3389/fphar.2018.00903
doi: 10.3389/fphar.2018.00903 |
15 |
YANG B, LIN H, XIAO J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2[J]. Nat Med, 2007,13(4): 486-491. doi:10.1038/nm1569
doi: 10.1038/nm1569 |
16 |
LUO X, PAN Z, SHAN H, et al. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation[J]. J Clin Invest, 2013,123(5): 1939-1951. doi:10.1172/jci62185
doi: 10.1172/jci62185 |
17 |
FITZPATRICK C M. MicroRNA directly modulates cardiac ion channel[J]. Nat Rev Cardiol, 2021,18(5): 308. doi:10.1038/s41569-021-00540-5
doi: 10.1038/s41569-021-00540-5 |
18 |
PETKOVA M, ATKINSON A J, YANNI J, et al. Identification of Key Small Non-Coding MicroRNAs Controlling Pacemaker Mechanisms in the Human Sinus Node[J]. J Am Heart Assoc, 2020,9(20): e16590. doi:10.1161/jaha.120.016590
doi: 10.1161/jaha.120.016590 |
19 |
YANNI J, D'SOUZA A, WANG Y, et al. Silencing miR-370-3p rescues funny current and sinus node function in heart failure[J]. Sci Rep, 2020,10(1): 11279. doi:10.1038/s41598-020-67790-0
doi: 10.1038/s41598-020-67790-0 |
20 |
LI N, ARTIGA E, KALYANASUNDARAM A, et al. Altered microRNA and mRNA profiles during heart failure in the human sinoatrial node[J]. Sci Rep, 2021,11(1): 19328. doi:10.1038/s41598-021-98580-x
doi: 10.1038/s41598-021-98580-x |
21 |
TERENTYEV D, BELEVYCH A E, TERENTYEVA R, et al. miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2[J]. Circ Res, 2009,104(4): 514-521. doi:10.1161/circresaha.108.181651
doi: 10.1161/circresaha.108.181651 |
22 |
PARK J, KHO C. MicroRNAs and Calcium Signaling in Heart Disease[J]. Int J Mol Sci, 2021,22(19):10582. doi:10.3390/ijms221910582
doi: 10.3390/ijms221910582 |
23 |
CHENG W, KAO Y, CHAO T, et al. MicroRNA-133 suppresses ZFHX3-dependent atrial remodelling and arrhythmia[J]. Acta Physiol (Oxf), 2019,227(3): e13322. doi:10.1111/apha.13322
doi: 10.1111/apha.13322 |
24 |
HAN B, TREW M L, ZGIERSKI-JOHNSTON C M. Cardiac Conduction Velocity, Remodeling and Arrhythmogenesis[J]. Cells, 2021,10(11):2923. doi:10.3390/cells10112923
doi: 10.3390/cells10112923 |
25 |
YI J, DUAN H, CHEN K, et al. Cardiac Electrophysiological Changes and Downregulated Connexin 43 Prompts Reperfusion Arrhythmias Induced by Hypothermic Ischemia-Reperfusion Injury in Isolated Rat Hearts[J]. J Cardiovasc Transl Res, 2022,15(6): 1464-1473. doi:10.1007/s12265-022-10256-7
doi: 10.1007/s12265-022-10256-7 |
26 |
ZHAO Y, RANSOM J F, LI A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2[J]. Cell, 2007,129(2): 303-317. doi:10.1016/j.cell.2007.03.030
doi: 10.1016/j.cell.2007.03.030 |
27 |
CALLIS T E, PANDYA K, SEOK H Y, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice[J]. J Clin Invest, 2009,119(9): 2772-2786. doi:10.1172/jci36154
doi: 10.1172/jci36154 |
28 |
WANG J, XU L, TIAN L, et al. Circulating microRNA-208 family as early diagnostic biomarkers for acute myocardial infarction: A meta-analysis[J]. Medicine, 2021,100(51): e27779. doi:10.1097/md.0000000000027779
doi: 10.1097/md.0000000000027779 |
29 |
DHEIN S, SALAMEH A. Remodeling of Cardiac Gap Junctional Cell-Cell Coupling[J]. Cells, 2021,10(9):2422. doi:10.3390/cells10092422
doi: 10.3390/cells10092422 |
30 |
BILLUR D, OLGAR Y, TURAN B. Intracellular Redistribution of Left Ventricular Connexin 43 Contributes to the Remodeling of Electrical Properties of the Heart in Insulin-resistant Elderly Rats[J]. J Histochem Cytochem, 2022,70(6): 447-462. doi:10.1369/00221554221101661
doi: 10.1369/00221554221101661 |
31 |
OSBOURNE A, CALWAY T, BROMAN M, et al. Downregulation of connexin43 by microRNA-130a in cardiomyocytes results in cardiac arrhythmias[J]. J Mol Cell Cardiol, 2014,74: 53-63. doi:10.1016/j.yjmcc.2014.04.024
doi: 10.1016/j.yjmcc.2014.04.024 |
32 |
WANG N, SUN L, ZHANG S, et al. MicroRNA-23a participates in estrogen deficiency induced gap junction remodeling of rats by targeting GJA1[J]. Int J Biol Sci, 2015,11(4): 390-403. doi:10.7150/ijbs.10930
doi: 10.7150/ijbs.10930 |
33 |
NAPPI F, IERVOLINO A, AVTAAR SINGH S S, et al. MicroRNAs in Valvular Heart Diseases: Biological Regulators, Prognostic Markers and Therapeutical Targets[J]. Int J Mol Sci, 2021,22(22):12132. doi:10.3390/ijms222212132
doi: 10.3390/ijms222212132 |
[1] | Shuang CHEN,Na YANG,Yudong HUANG,Xiangfeng KONG,Jintao LI,Yizhong TANG,Kexiong MA,Yangyang ZHANG,Yuandong ZHANG,Chengde REN. Relationship between serum miR-21 and miR-27b levels and prognosis of patients with renal clear cell carcinoma [J]. The Journal of Practical Medicine, 2024, 40(3): 343-348. |
[2] | Zhishi WANG,Guiling LI,Jingguo CHEN,Hong. WANG. Effects of miR⁃223 on prostate cancer cell damage by regulating Keap1/Nrf2/ARE signaling pathway [J]. The Journal of Practical Medicine, 2024, 40(17): 2375-2380. |
[3] | Qian MA,Shaolan ZHOU,Huijuan CHEN,Yanfeng. WANG. Expressions and clinical significance of miR⁃4524a⁃3p in peripheral blood mononuclear cells of patients with systemic lupus erythematosus [J]. The Journal of Practical Medicine, 2024, 40(17): 2412-2417. |
[4] | Xiaoli SUN,Huijie. FAN. Correlation between serum levels of miR⁃23a, miR⁃150, and miR⁃150⁃5p and diabetic osteoporosis [J]. The Journal of Practical Medicine, 2024, 40(16): 2244-2249. |
[5] | Zhaohua YAN,Jianbin ZHENG,Na ZHANG,Chunyan CAO,Luchun. YAN. MiR⁃365a⁃3p affects vascular endothelial cell function through TGF⁃β signaling pathway and participates in the pathogenesis of preeclampsia [J]. The Journal of Practical Medicine, 2024, 40(16): 2263-2269. |
[6] | Fahui WANG,Qingchun DENG,Jiajia LIN,Chunfei. CHEN. GATA3 mediates the effect of miR⁃21/PTEN axis on the proliferation and invasion of endometrial cancer cells [J]. The Journal of Practical Medicine, 2024, 40(15): 2069-2074. |
[7] | Siqi NIAN,Lulu ZHAO,Baotong. HUA. Research progress in atrial arrhythmia recurrence after catheter ablation for atrial fibrillation [J]. The Journal of Practical Medicine, 2024, 40(10): 1338-1343. |
[8] |
ZHANG Jianqing, WANG Qing, JIANG Kehua, SUN Fa..
The role of microRNAs in kidney stone disease:a literature review [J]. The Journal of Practical Medicine, 2023, 39(6): 773-777. |
[9] |
BI Jing, HUANG Bo..
Clinical value of miR⁃92a and miR⁃342 in peripheral blood in the diagnosis and prognosis of acute lung injury [J]. The Journal of Practical Medicine, 2023, 39(3): 360-368. |
[10] |
YUAN Feng, ZHANG Shuli, LI Shaojun, LI Min, HU Han, TONG Shengxiong, TIAN Jiayu, FENG Dan. Pain.
Changes of serum miR⁃21 and HIF⁃1α levels before and after treatment in patients with herpes zoster and ROC analysis for evaluating postherpetic neuralgia [J]. The Journal of Practical Medicine, 2023, 39(3): 364-368. |
[11] | Fei WEI,Xiangyu WANG,Zhiyong LIU. Effect of Xuebijing on lung tissue damage induced by Klebsiella pneumoniae in rats with severe pneumonia through miR⁃155/JAK2/STAT1 signaling pathway [J]. The Journal of Practical Medicine, 2023, 39(18): 2335-2341. |
[12] | Jing WU,Zuqiong NIE,Wanling. YIN. MiR⁃499 protects hypoxia/reoxygenation (H/R) cardiomyocytes through Drp1⁃mediated mitochondrial autophagy [J]. The Journal of Practical Medicine, 2023, 39(17): 2196-2203. |
[13] |
ZHANG Cuicui, SUN Wenping, XIE Ling..
miR⁃27a attenuates oxidative stress and inflammatory damage in diabetic pregnant rats by targeting TLR4 [J]. The Journal of Practical Medicine, 2023, 39(12): 1487-1493. |
[14] |
ZHOU Xiangui, JIANG Yan, HAN Mei, ZHEGN Jie, QIN Song..
miR21⁃5p targets transcriptional activator protein STAT3 to alleviate hyperoxia⁃induced acute lung injury [J]. The Journal of Practical Medicine, 2023, 39(1): 21-27. |
[15] |
AN Li, GAO Hong, LIU Yanqiu, ZHONG Yi, CAO Ying, YI Jing, LIU Yang, TONG Rui, PAN Zhijun, WANG Shengzhao, WU Hao, LIU Meiyan.
STIP1 may affect ventricular myoelectric conduction after hypothermic ischemia⁃reperfusion by regulating the expression of Cx43 [J]. The Journal of Practical Medicine, 2023, 39(1): 35-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||