The Journal of Practical Medicine ›› 2023, Vol. 39 ›› Issue (24): 3290-3296.doi: 10.3969/j.issn.1006-5725.2023.24.025
• Reviews • Previous Articles Next Articles
Daixu WEI1,2,Yu LIU1,Wenhui ZHOU2,Zhaoping. LIU1
Received:
2023-07-26
Online:
2023-12-25
Published:
2024-01-10
CLC Number:
Daixu WEI,Yu LIU,Wenhui ZHOU,Zhaoping. LIU. Research progress of exogenous ketone body 3⁃hydroxybutyrate supplementation for human disease treatment[J]. The Journal of Practical Medicine, 2023, 39(24): 3290-3296.
Tab.1
Exogenous ketone body 3-hydroxybutyrate supplementation for human disease treatment"
应用领域 | 3HB使用浓度 | 细胞或动物模型 | 给药方式 | 功能与作用 | 参考文献 |
---|---|---|---|---|---|
癫痫 | 人 | 口服 | KD对难治性癫痫治疗有效。KD降低肠道菌群的丰富度和多样性,但有益细菌数量增加。特定的肠道微生物群可以作为癫痫的生物标志物和潜在治疗靶点 | [ | |
减肥 | 人 | 口服 | 限制碳水化合物能改善异常脂肪酸组成。与高热量碳水化合物摄入相比,低碳水/高脂肪膳食对代谢综合征更有益。 | [ | |
全身性炎症 | 10 mmol/L 3HB | 巨噬细胞 | / | 3HB通过阻止K+外排,减少 ASC寡聚化和斑点形成抑制 NLRP3炎症小体。 | [ |
1, 5, 10 mmol/L 3HB | 大鼠 中性粒细胞 | 口服 | |||
80 mg/mL 3HB | 大鼠 | 注射 | |||
250 mg/kg 3HB | 小鼠 | 注射 | 3HB可防止顺铂诱导的AKI和NLRP3炎症体和cGAS-STING途径介导的肾小管损伤。 | ||
失血性休克 | 4 M 3HB | 猪 | 注射 | 使用3HB作为能量替代的来源降低肝脏糖异生,提高失血性休克存活率。 | [ |
结肠癌 | 100 mg/(kg·d) 3HB | 小鼠 | 口服 | 3HB显著抑制结肠炎症和癌变,有望以食物补充剂的形式对结肠疾病进行预防。 | [ |
80 mg/kg 和 10 mmol/L | 小鼠 肠上皮细胞 | 口服 | 3HB通过表面受体Hcar2作用,诱导转录调控因子Hopx,从而改变基因表达,抑制细胞增殖。3HB可补充当前的CRC预防和治疗策略。 | [ | |
心血管疾病 | 25 μmol/(kg·min) | 大鼠 | 注射 | 高浓度3HB可能是通过为禁食大鼠心肌提供更多的能量底物,减少缺血再灌注引起的心肌梗死大小和细胞凋亡。 | [ |
100 mg/(kg·d) | 小鼠 | 口服 | 3HB通过促进细胞外钙的流入,通过Gpr109a-NLRP3途径抑制炎症并降低滞留在巨噬细胞中的胆固[醇从而减轻小鼠的动脉粥样硬化。 | [ | |
糖尿病 | 40 mmol/L | 成纤维细胞 | / | 3HB的存在使胰岛素与细胞的结合增加。然而,3HB对胰岛素刺激糖原合成酶或总葡萄糖摄取没有影响。 | [ |
20 or 30 mmmol/(L·kg) | 小鼠 | 注射 | 3HB可逆转哺乳断奶小鼠胰岛素诱导的低血糖昏迷。 | [ | |
骨质疏松 | 小鼠 成骨细胞 (MC3T3-E1) | 口服 | 3HB能支持小鼠成骨细胞MC3T3-E1体外分化且与作用浓度成正比,同时3HB也改善了骨组织质量。 | [ | |
0.02 g/L | 成纤维细胞 (L929) | / | 3HB对周期进程有刺激作用,这是由依赖于Ca2+增加的信号通路介导的。 | [ | |
神经退行性疾病 | 多巴胺能神经元 | / | 添加适量3HB可保护培养的中脑神经元和海马神经元免受Aβ1–42和MPP+毒性作用 | [ | |
10 mmol/L | 小鼠 | 注射 | 小鼠输注酮体3HB对MPTP诱导的多巴胺能神经变性和运动缺陷具有部分保护作用。 | [ | |
小鼠 | 注射 | [ | |||
2.4 mmol/L | 人 | 注射 | 提供一种葡萄糖替代物,如3HB,会恢复葡萄糖受损神经元的代谢平衡,并改善糖尿患者的认知能力。 | [ | |
肌肉萎缩 | 50 mg/(kg·d) | 小鼠 | 灌胃 | 3HB通过Akt/FoxO3amTOR/4E-BP1途径维持肌肉蛋白质的合成代谢/分解代谢平衡,从而有效的治疗肌肉萎缩症。 | [ |
长寿与抗衰老 | 20 mmol/L | 线虫 | 口服 | 3HB通过抑制HDACs和激活保守的应激反应来延长寿命。 | [ |
小鼠 | 口服 | KD通过增加蛋白乙酰化水平和调控mTORC1发出信号,从而延长老鼠的寿命。 | |||
小鼠 | 口服 | 非致肥性KD可提高衰老小鼠的记忆力和寿命。 |
1 | MOLLER N. Ketone Body, 3-Hydroxybutyrate: Minor Metabolite- Major Medical Manifestations [J]. J Clin Endocrinol Metab, 2020, 105(9):dgaa370. |
2 | WEI D X, DAO J W, LIU H W, et al. Suspended polyhydroxyalkanoate microspheres as 3D carriers for mammalian cell growth [J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup2): 473-483. |
3 | WEI D X, DAO J W, CHEN G Q. A Micro-Ark for Cells: Highly Open Porous Polyhydroxyalkanoate Microspheres as Injectable Scaffolds for Tissue Regeneration [J]. Adv Mater, 2018, 30(31): e1802273. |
4 | WANG Z Y, ZHANG X W, DING Y W, et al. Natural biopolyester microspheres with diverse structures and surface topologies as micro-devices for biomedical applications [J]. Smart Mater Med, 2022,7:4. |
5 | XIANG Y, WANG Q Q, LAN X Q, et al. Function and treatment strategies of β-hydroxybutyrate in aging [J]. Smart Mater Med, 2023,4:160-172. |
6 | PAWAN G, SEMPLE S. Effect of 3-hydroxybutyrate in obese subjects on very-low-energy diets and during therapeutic starvation [J]. Lancet, 1983, 321(8314-8315): 15-17. |
7 | WANG B L, WU J F, XIAO D, et al. 3‐hydroxybutyrate in the brain: Biosynthesis, function, and disease therapy [J]. Brain‐X, 2023, 1(1):doi.org/10.1002/brx2.6. |
8 | NEWMAN J C, VERDIN E. beta-Hydroxybutyrate: A Signaling Metabolite [J]. Annu Rev Nutr, 2017, 37: 51-76. |
9 | KIMURA I, INOUE D, MAEDA T, et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41) [J]. Proc Natil Acad Sci U S A, 2011, 108(19): 8030-8035. |
10 | YUDKOFF M, DAIKHIN Y, NISSIM I, et al. Brain amino acid metabolism and ketosis [J]. J Neurosci Res, 2001, 66(2): 272-281. |
11 | ROJASMORALES P, PEDRAZACHAVERRI J, TAPIA E. Ketone bodies, stress response, and redox homeostasis [J]. Redox Biol, 2020, 29: 101395. |
12 | HARTMAN A L, VINING E P. Clinical aspects of the ketogenic diet [J]. Epilepsia, 2007, 48(1): 31-42. |
13 | HYDE P N, SAPPER T N, CRABTREE C D, et al. Dietary carbohydrate restriction improves metabolic syndrome independent of weight loss [J]. JCI Insight, 2019, 4(12):e128308. |
14 | ZHANG Y, ZHOU S, ZHOU Y, et al. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet [J]. Epilepsy Res, 2018, 145: 163-168. |
15 | THOMSEN H H, RITTIG N, JOHANNSEN M, et al. Effects of 3-hydroxybutyrate and free fatty acids on muscle protein kinetics and signaling during LPS-induced inflammation in humans: anticatabolic impact of ketone bodies [J]. Am J Clin Nutr, 2018, 108(4): 857-867. |
16 | OFFERMANNS S. Hydroxy-Carboxylic Acid Receptor Actions in Metabolism [J]. Trends Endocrinol Metab, 2017, 28(3): 227-236. |
17 | GRAFF E C, FANG H, WANDERS D, et al. Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2 [J]. Metabolism, 2016, 65(2): 102-113. |
18 | YOUM Y H, NGUYEN K Y, GRANT R W, et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease [J]. Nat Med, 2015, 21(3): 263-269. |
19 | GOLDBERG E L, ASHER J L, MOLONY R D, et al. beta-Hydroxybutyrate Deactivates Neutrophil NLRP3 Inflammasome to Relieve Gout Flares [J]. Cell Rep, 2017, 18(9): 2077-2087. |
20 | KAJITANI N, IWATA M, MIURA A, et al. Prefrontal cortex infusion of beta-hydroxybutyrate, an endogenous NLRP3 inflammasome inhibitor, produces antidepressant-like effects in a rodent model of depression [J]. Neuropsychopharmacol Rep, 2020, 40(2): 157-165. |
21 | LUO S, YANG M, HAN Y, et al. beta-Hydroxybutyrate against Cisplatin-Induced acute kidney injury via inhibiting NLRP3 inflammasome and oxidative stress [J]. Int Immunopharmacol, 2022, 111: 109101. |
22 | SHIDO O, NAGASAKA T, WATANABE T. Blunted febrile response to intravenous endotoxin in starved rats [J]. J Appl Physiol (1985), 1989, 67(3): 963-969. |
23 | JOHNSON J B, SUMMER W, CUTLER R G, et al. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma [J]. Free Radic Biol Med, 2007, 42(5): 665-674. |
24 | MULIER K E, LEXCEN D R, LUZCEK E, et al. Treatment with beta-hydroxybutyrate and melatonin is associated with improved survival in a porcine model of hemorrhagic shock [J]. Resuscitation, 2012, 83(2): 253-258. |
25 | WOLF A, THAKRAL S, MULIER K E, et al. Evaluation of novel formulations of d-beta-hydroxybutyrate and melatonin in a rat model of hemorrhagic shock [J]. Int J Pharma, 2018, 548(1): 104-112. |
26 | FENG S, WANG H, LIU J, et al. Multi-dimensional roles of ketone bodies in cancer biology: Opportunities for cancer therapy [J]. Pharmacol Res, 2019, 150: 104500. |
27 | LI Z, ZHANG S, ZHANG Y, et al. Applications and Mechanism of 3-Hydroxybutyrate (3HB) for Prevention of Colonic Inflammation and Carcinogenesis as a Food Supplement [J]. Mol Nutr Food Res, 2021, 65(24): e2100533. |
28 | DMITRIEVA-POSOCCO O, WONG A C, LUNDGREN P, et al. beta-Hydroxybutyrate suppresses colorectal cancer [J]. Nature, 2022, 605(7908): 160-165. |
29 | ZOU Z, SASAGURI S, RAJESH K G, et al. dl-3-Hydroxybutyrate administration prevents myocardial damage after coronary occlusion in rat hearts [J]. Am J Physiol Heart Circ Physiol, 2002, 283(5): H1968-H1974. |
30 | NIELSEN R, MOLLER N, GORMSEN L C, et al. Cardiovascular Effects of Treatment With the Ketone Body 3-Hydroxybutyrate in Chronic Heart Failure Patients [J]. Circulation, 2019, 139(18): 2129-2141. |
31 | ZHANG S J, LI Z H, ZHANG Y D, et al. Ketone Body 3-Hydroxybutyrate Ameliorates Atherosclerosis via Receptor Gpr109a-Mediated Calcium Influx [J]. Adv Sci (Weinh), 2021, 8(9): 2003410. |
32 | GREEN A, BUSTILLOS D P, MISBIN R I. β-Hydroxybutyrate increases the insulin sensitivity of adipocyte glucose transport at a postreceptor level [J]. Diabetes, 1984, 33(11): 1045-1050. |
33 | HIDAKA H, HOWARD B V, ISHIBASHI F, et al. Effect of pH and 3-hydroxybutyrate on insulin binding and action in cultured human fibroblasts [J]. Diabetes, 1981, 30(5): 402-406. |
34 | THURSTON J H, HAUHART R E, SCHIRO J A. β-Hydroxybutyrate reverses insulin-induced hypoglycemic coma in suckling-weanling mice despite low blood and brain glucose levels [J]. Metabolic Brain Disease, 1986, 1(1): 63-82. |
35 | ZHAO Y, ZOU B, SHI Z, et al. The effect of 3-hydroxybutyrate on the in vitro differentiation of murine osteoblast MC3T3-E1 and in vivo bone formation in ovariectomized rats [J]. Biomaterials, 2007, 28(20): 3063-3073. |
36 | KASHIWAYA Y, TAKESHIMA T, MORI N, et al. d-β-Hydroxybutyrate protects neurons in models of Alzheimer's and Parkinson's disease [J]. Proceedings of the National Academy of Sciences, 2000, 97(10): 5440-5444. |
37 | TIEU K, PERIER C, CASPERSEN C, et al. D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease [J]. J Clin Investi, 2003, 112(6): 892-901. |
38 | LIM S, CHESSER A S, GRIMA J C, et al. D-β-hydroxybutyrate is protective in mouse models of Huntington's disease [J]. PLoS One, 2011, 6(9): e24620. |
39 | OTA M, MATSUO J, ISHIDA I, et al. Effect of a ketogenic meal on cognitive function in elderly adults: potential for cognitive enhancement [J]. Psychopharmacology (Berl), 2016, 233(21-22): 3797-3802. |
40 | KOPPEL S J, SWERDLOW R H. Neuroketotherapeutics: A modern review of a century-old therapy [J]. Neurochem Int, 2018, 117: 114-125. |
41 | JENSEN N J, NILSSON M, INGERSLEV J S, et al. Effects of beta-hydroxybutyrate on cognition in patients with type 2 diabetes [J]. Eur J Endocrinol, 2020, 182(2): 233-242. |
42 | MAALOUF M, SULLIVAN P G, DAVIS L, et al. Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation [J]. Neuroscience, 2007, 145(1): 256-264. |
43 | SHIMAZU T, HIRSCHEY M D, NEWMAN J, et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor [J]. Science, 2013, 339(6116): 211-214. |
44 | SLEIMAN S F, HENRY J, AL-HADDAD R, et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body beta-hydroxybutyrate [J]. Elife, 2016, 5:e15092. |
45 | SVART M, GORMSEN L C, HANSEN J, et al. Regional cerebral effects of ketone body infusion with 3-hydroxybutyrate in humans: Reduced glucose uptake, unchanged oxygen consumption and increased blood flow by positron emission tomography. A randomized, controlled trial [J]. PLoS One, 2018, 13(2): e0190556. |
46 | CHEN J, LI Z, ZHANG Y, et al. Mechanism of reduced muscle atrophy via ketone body (D)-3-hydroxybutyrate [J]. Cell Biosci, 2022, 12(1): 94. |
47 | LI Z, ZHANG Y, HAN M, et al. Lysine β-Hydroxybutyrylation Improves Stability of COVID-19 Antibody [J]. Biomacromolecules, 2021, 23(1): 454-463. |
48 | XU X, SUN J, SONG R, et al. Inhibition of p70 S6 kinase (S6K1) activity by A77 1726, the active metabolite of leflunomide, induces autophagy through TAK1-mediated AMPK and JNK activation [J]. Oncotarget, 2017, 8(18): 30438-30454. |
49 | RUAN H B, CRAWFORD P A. Ketone bodies as epigenetic modifiers [J]. Curr Opin Clin Nutr Metab Care, 2018, 21(4): 260-266. |
50 | PUCHALSKA P, CRAWFORD P A. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics [J]. Cell Metab, 2017, 25(2): 262-284. |
51 | VEECH R L, BRADSHAW P C, CLARKE K, et al. Ketone bodies mimic the life span extending properties of caloric restriction [J]. IUBMB Life, 2017, 69(5): 305-314. |
52 | EDWARDS C, CANFIELD J, COPES N, et al. D-beta-hydroxybutyrate extends lifespan in C. elegans [J]. Aging (Albany NY), 2014, 6(8): 621-644. |
53 | ROBERTS M N, WALLACE M A, TOMILOV A A, et al. A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice [J]. Cell Metab, 2018, 27(5): 1156. |
54 | NEWMAN J C, COVARRUBIAS A J, ZHAO M, et al. Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice [J]. Cell Metab, 2017, 26(3): 547-557 e8. |
[1] | Yingmei HAN,Yijie LI,Heng ZHANG,Jing LV,Yi ZHANG,Yingbo QIAO,Nan LIN,Huiyong XU,Feng. WANG. Research progress of large-scale brain network of Alzheimer’s disease based on MRI analysis [J]. The Journal of Practical Medicine, 2024, 40(4): 575-579. |
[2] | Xia NAN,Wenling LI,Lin. WANG. Advances in MRI studies of brain structure and cerebral blood perfusion in patients with bipolar disorder [J]. The Journal of Practical Medicine, 2024, 40(4): 580-584. |
[3] | Shuang CHEN,Na YANG,Yudong HUANG,Xiangfeng KONG,Jintao LI,Yizhong TANG,Kexiong MA,Yangyang ZHANG,Yuandong ZHANG,Chengde REN. Relationship between serum miR-21 and miR-27b levels and prognosis of patients with renal clear cell carcinoma [J]. The Journal of Practical Medicine, 2024, 40(3): 343-348. |
[4] | Huiling YE,Renming. ZHONG. Progress in assessing the treatment accuracy of liver stereotactic body radiotherapy through post-therapeutic magnetic resonance imaging morphologic alterations [J]. The Journal of Practical Medicine, 2024, 40(22): 3119-3123. |
[5] | Ji JIN,Hong SUN,Yong ZHUANG,Xu NING,Miao LIU. Research progress on mechanism and treatment of intervertebral disc aging [J]. The Journal of Practical Medicine, 2024, 40(22): 3268-3274. |
[6] | Cheng CHEN,Xinyang YU,Hua. ZHANG. Advances in imaging diagnosis of placenta accreta spectrum [J]. The Journal of Practical Medicine, 2024, 40(21): 2976-2981. |
[7] | Jiarui ZHAO,Yulai GONG. Effectiveness of resting-state fMRI in the diagnosis of temporal lobe epilepsy-associated cognitive impairment: A review of literature [J]. The Journal of Practical Medicine, 2024, 40(20): 2954-2959. |
[8] | Haideng LONG,Shiwu YIN,Shengquan PAN,Tingmiao XIANG,Junfei SONG,Yuan. WANG. Application value of iFlow color flow coding imaging technology in diagnosis of arteriosclerosis obliterans of lower limbs [J]. The Journal of Practical Medicine, 2024, 40(18): 2623-2628. |
[9] | Kun YANG,Lan WANG,Zhihu ZHAO,Yan ZHANG,Guoying. YU. Research progress on the assembly and release mechanisms of coronaviruses [J]. The Journal of Practical Medicine, 2024, 40(18): 2654-2659. |
[10] | Shaojin LI,Shipeng. ZHENG. Relevant preoperative imaging pathological features and tumor markers serve as predictive indicators for the risk of sentinel lymph node metastasis in breast cancer [J]. The Journal of Practical Medicine, 2024, 40(17): 2418-2424. |
[11] | Di WANG,Dan LIAO,Yuancheng LIU,Rui XU,Qinghong. DUAN. Analysis of global local consistency changes in first-episode depression with childhood maltreatment based on resting-state magnetic resonance [J]. The Journal of Practical Medicine, 2024, 40(16): 2311-2315. |
[12] | Yue LÜ,Hujing LU,Juanjuan. ZHANG. Value of MRI-DWI combined with attenuation imaging in diagnosis of focal nodular lesions < 2 cm in fatty liver [J]. The Journal of Practical Medicine, 2024, 40(15): 2148-2153. |
[13] | Qiaochu LU,Kang WANG,Luwen. ZHANG. Multimorbidity and falls in middle⁃aged and elderly people in China: evidence from CHARLS [J]. The Journal of Practical Medicine, 2024, 40(13): 1851-1858. |
[14] | Zhe ZENG,Lin LUO,Qiang CHEN,Siqi HOU,Shengzhe. JIANG. Default mode network analysis associated with memory impairment in acute mild traumatic brain injury [J]. The Journal of Practical Medicine, 2024, 40(10): 1412-1417. |
[15] |
HAN Dong, SUN Yuan, LIU Chunjie, LI Mingyu, SAI Jinhai, WANG Shenglin..
A quantitative diagnosis of conventional MRI and DTI in neuromyelitis optica [J]. The Journal of Practical Medicine, 2023, 39(8): 1035-1039. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||