The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (9): 1309-1318.doi: 10.3969/j.issn.1006-5725.2025.09.006
• Basic Research • Previous Articles
Ziling ZENG1,2,Xing WANG1,Hongmei TANG1,Zhibin WANG1,Ning MA1,Yuejiao LI1,Xiaoyun WANG1,Xiefang YUAN1,Guofeng XU1,Qiaoqiao WANG2,Wen ZHANG2,Jiayao DUAN1,2,Yun ZHANG1,2()
Received:
2025-02-07
Online:
2025-05-10
Published:
2025-05-20
Contact:
Yun ZHANG
E-mail:zhangyun000hf@163.com
CLC Number:
Ziling ZENG,Xing WANG,Hongmei TANG,Zhibin WANG,Ning MA,Yuejiao LI,Xiaoyun WANG,Xiefang YUAN,Guofeng XU,Qiaoqiao WANG,Wen ZHANG,Jiayao DUAN,Yun ZHANG. House dust mite⁃induced autophagy affects airway epithelial barrier function through β⁃catenin⁃Snail signaling pathway[J]. The Journal of Practical Medicine, 2025, 41(9): 1309-1318.
1 |
HE Z, FENG J, XIA J, et al. Frequency of Signs and Symptoms in Persons With Asthma [J]. Respir Care, 2020, 65(2): 252-264. doi:10.4187/respcare.06714
doi: 10.4187/respcare.06714 |
2 |
WANG J Y. The innate immune response in house dust mite-induced allergic inflammation [J]. Allergy Asthma Immunol Res, 2013, 5(2): 68-74. doi:10.4168/aair.2013.5.2.68
doi: 10.4168/aair.2013.5.2.68 |
3 |
STEVENSON C S, BIRRELL M A. Moving towards a new generation of animal models for asthma and COPD with improved clinical relevance [J]. Pharmacol Ther, 2011, 130(2): 93-105. doi:10.1016/j.pharmthera.2010.10.008
doi: 10.1016/j.pharmthera.2010.10.008 |
4 |
WANG Q, GUO L, ZENG Z, et al. Neferine Attenuates HDM-Induced Allergic Inflammation by Inhibiting the Activation of Dendritic Cell [J]. Inflammation, 2023, 46(6): 2433-2448. doi:10.1007/s10753-023-01891-6
doi: 10.1007/s10753-023-01891-6 |
5 |
GON Y, HASHIMOTO S. Role of airway epithelial barrier dysfunction in pathogenesis of asthma [J]. Allergol Int, 2018, 67(1): 12-17. doi:10.1016/j.alit.2017.08.011
doi: 10.1016/j.alit.2017.08.011 |
6 |
ZIHNI C, MILLS C, MATTER K, et al. Tight junctions: from simple barriers to multifunctional molecular gates [J]. Nat Rev Mol Cell Biol, 2016, 17(9): 564-580. doi:10.1038/nrm.2016.80
doi: 10.1038/nrm.2016.80 |
7 |
GEORAS S N, REZAEE F. Epithelial barrier function: At the front line of asthma immunology and allergic airway inflammation [J]. J Allergy Clin Immunol, 2014, 134(3): 509-520. doi:10.1016/j.jaci.2014.05.049
doi: 10.1016/j.jaci.2014.05.049 |
8 |
PARK S W, LEE E H, LEE E J, et al. Apolipoprotein A1 potentiates lipoxin A4 synthesis and recovery of allergen-induced disrupted tight junctions in the airway epithelium [J]. Clin Exp Allergy, 2013, 43(8): 914-927. doi:10.1111/cea.12143
doi: 10.1111/cea.12143 |
9 |
GANAPATHY A S, SAHA K, SUCHANEC E, et al. AP2M1 mediates autophagy-induced CLDN2 (claudin 2) degradation through endocytosis and interaction with LC3 and reduces intestinal epithelial tight junction permeability [J]. Autophagy, 2022, 18(9): 2086-2103. doi:10.1080/15548627.2021.2016233
doi: 10.1080/15548627.2021.2016233 |
10 |
LIU M, WANG Q, WU W, et al. Glaesserella parasuis serotype 5 breaches the porcine respiratory epithelial barrier by inducing autophagy and blocking the cell membrane Claudin-1 replenishment [J]. PLoS Pathog, 2022, 18(10): e1010912. doi:10.1371/journal.ppat.1010912
doi: 10.1371/journal.ppat.1010912 |
11 |
ZHOU J S, ZHAO Y, ZHOU H B, et al. Autophagy plays an essential role in cigarette smoke-induced expression of MUC5AC in airway epithelium [J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310(11): L1042-1052. doi:10.1152/ajplung.00418.2015
doi: 10.1152/ajplung.00418.2015 |
12 |
DICKINSON J D, ALEVY Y, MALVIN N P, et al. IL13 activates autophagy to regulate secretion in airway epithelial cells [J]. Autophagy, 2016, 12(2): 397-409. doi:10.1080/15548627.2015.1056967
doi: 10.1080/15548627.2015.1056967 |
13 |
CHEN Z H, WU Y F, WANG P L, et al. Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium [J]. Autophagy, 2016, 12(2): 297-311. doi:10.1080/15548627.2015.1124224
doi: 10.1080/15548627.2015.1124224 |
14 | FAN Y, HOU T, DAN W, et al. Silibinin inhibits epithelial‑ mesenchymal transition of renal cell carcinoma through autophagy‑dependent Wnt/β‑catenin signaling [J]. Int J Mol Med, 2020, 45(5): 1341-1350. |
15 |
TIAN Y, WU J, ZENG L, et al. Huaier polysaccharides suppress triple-negative breast cancer metastasis and epithelial-mesenchymal transition by inducing autophagic degradation of Snail [J]. Cell Biosci, 2021, 11(1): 170. doi:10.1186/s13578-021-00682-6
doi: 10.1186/s13578-021-00682-6 |
16 |
YU F, YU C, LI F, et al. Wnt/β-catenin signaling in cancers and targeted therapies [J]. Signal Transduct Target Ther, 2021, 6(1): 307. doi:10.1038/s41392-021-00701-5
doi: 10.1038/s41392-021-00701-5 |
17 |
LI J, LIU N, ZHOU H, et al. Immunoproteasome inhibition prevents progression of castration-resistant prostate cancer [J]. Br J Cancer, 2023, 128(7): 1377-1390. doi:10.1038/s41416-022-02129-2
doi: 10.1038/s41416-022-02129-2 |
18 |
KANLAYA R, KAPINCHARANON C, FONG-NGERN K, et al. Induction of mesenchymal-epithelial transition (MET) by epigallocatechin-3-gallate to reverse epithelial-mesenchymal transition (EMT) in SNAI1-overexpressed renal cells: A potential anti-fibrotic strategy [J]. J Nutr Biochem, 2022, 107: 109066. doi:10.1016/j.jnutbio.2022.109066
doi: 10.1016/j.jnutbio.2022.109066 |
19 |
GREGORY L G, LLOYD C M. Orchestrating house dust mite-associated allergy in the lung [J]. Trends Immunol, 2011, 32(9): 402-411. doi:10.1016/j.it.2011.06.006
doi: 10.1016/j.it.2011.06.006 |
20 |
ZEKI A A, YEGANEH B, KENYON N J, et al. Autophagy in airway diseases: A new frontier in human asthma? [J]. Allergy, 2016, 71(1): 5-14. doi:10.1111/all.12761
doi: 10.1111/all.12761 |
21 |
RACANELLI A C, KIKKERS S A, CHOI A M K, et al. Autophagy and inflammation in chronic respiratory disease [J]. Autophagy, 2018, 14(2): 221-232. doi:10.1080/15548627.2017.1389823
doi: 10.1080/15548627.2017.1389823 |
22 |
HE C, KLIONSKY D J. Regulation mechanisms and signaling pathways of autophagy [J]. Annu Rev Genet, 2009, 43: 67-93. doi:10.1146/annurev-genet-102808-114910
doi: 10.1146/annurev-genet-102808-114910 |
23 |
ALBANO G D, GAGLIARDO R P, MONTALBANO A M, et al. Overview of the Mechanisms of Oxidative Stress: Impact in Inflammation of the Airway Diseases [J]. Antioxidants (Basel), 2022, 11(11): 2237. doi:10.3390/antiox11112237
doi: 10.3390/antiox11112237 |
24 |
SUZUKI Y, AONO Y, AKIYAMA N, et al. Involvement of autophagy in exacerbation of eosinophilic airway inflammation in a murine model of obese asthma [J]. Autophagy, 2022, 18(9): 2216-2228. doi:10.1080/15548627.2022.2025571
doi: 10.1080/15548627.2022.2025571 |
25 | 颜鹏, 邓育琼, 黄杏兰, 等. 地塞米松对哮喘模型小鼠肺组织活性氧及线粒体基因MTCO1的影响 [J]. 实用医学杂志, 2022, 38(6): 731-737. |
26 |
FILOMENI G, DE ZIO D, CECCONI F. Oxidative stress and autophagy: The clash between damage and metabolic needs [J]. Cell Death Differ, 2015, 22(3): 377-388. doi:10.1038/cdd.2014.150
doi: 10.1038/cdd.2014.150 |
27 |
QIU Y N, WANG G H, ZHOU F, et al. PM2.5 induces liver fibrosis via triggering ROS-mediated mitophagy [J]. Ecotoxicol Environ Saf, 2019, 167: 178-187. doi:10.1016/j.ecoenv.2018.08.050
doi: 10.1016/j.ecoenv.2018.08.050 |
28 |
WANG B, WANG Y, ZHANG J, et al. ROS-induced lipid peroxidation modulates cell death outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis [J]. Arch Toxicol, 2023, 97(6): 1439-1451. doi:10.1007/s00204-023-03476-6
doi: 10.1007/s00204-023-03476-6 |
29 |
KIM N Y, SHIVANNE GOWDA S G, LEE S G, et al. Cannabidiol induces ERK activation and ROS production to promote autophagy and ferroptosis in glioblastoma cells [J]. Chem Biol Interact, 2024, 394: 110995. doi:10.1016/j.cbi.2024.110995
doi: 10.1016/j.cbi.2024.110995 |
30 |
RABY K L, MICHAELOUDES C, TONKIN J, et al. Mechanisms of airway epithelial injury and abnormal repair in asthma and COPD [J]. Front Immunol, 2023, 14: 1201658. doi:10.3389/fimmu.2023.1201658
doi: 10.3389/fimmu.2023.1201658 |
31 |
HUANG Z Q, LIU J, SUN L Y, et al. Updated epithelial barrier dysfunction in chronic rhinosinusitis: Targeting pathophysiology and treatment response of tight junctions [J]. Allergy, 2024, 79(5): 1146-1165. doi:10.1111/all.16064
doi: 10.1111/all.16064 |
32 |
STEELANT B, FARRé R, WAWRZYNIAK P, et al. Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression [J]. J Allergy Clin Immunol, 2016, 137(4): 1043-1053.e1045. doi:10.1016/j.jaci.2015.10.050
doi: 10.1016/j.jaci.2015.10.050 |
33 |
VINCENT T, NEVE E P, JOHNSON J R, et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition [J]. Nat Cell Biol, 2009, 11(8): 943-950. doi:10.1038/ncb1905
doi: 10.1038/ncb1905 |
34 |
ZHANG X, YU X, JIANG G, et al. Cytosolic TMEM88 promotes invasion and metastasis in lung cancer cells by binding DVLS [J]. Cancer Res, 2015, 75(21): 4527-4537. doi:10.1158/0008-5472.can-14-3828
doi: 10.1158/0008-5472.can-14-3828 |
35 |
KYUNO D, KOJIMA T, YAMAGUCHI H, et al. Protein kinase Cα inhibitor protects against downregulation of claudin-1 during epithelial-mesenchymal transition of pancreatic cancer [J]. Carcinogenesis, 2013, 34(6): 1232-1243. doi:10.1093/carcin/bgt057
doi: 10.1093/carcin/bgt057 |
36 |
MARTíNEZ-ESTRADA O M, LETTICE L A, ESSAFI A, et al. Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin [J]. Nat Genet, 2010, 42(1): 89-93. doi:10.1038/ng.494
doi: 10.1038/ng.494 |
37 |
GNEMMI V, BOUILLEZ A, GAUDELOT K, et al. MUC1 drives epithelial-mesenchymal transition in renal carcinoma through Wnt/β-catenin pathway and interaction with SNAIL promoter [J]. Cancer Lett, 2014, 346(2): 225-236. doi:10.1016/j.canlet.2013.12.029
doi: 10.1016/j.canlet.2013.12.029 |
38 | 肖知周, 黄莺, 卞华伟. 基于Wnt/β-catenin信号通路介导的自噬和凋亡探讨苦豆子碱对骨质疏松小鼠骨代谢的影响 [J]. 实用医学杂志, 2025, 41(4): 500-508. |
39 |
DAI X M, ZHANG Y H, LIN X H, et al. SIK2 represses AKT/GSK3β/β-catenin signaling and suppresses gastric cancer by inhibiting autophagic degradation of protein phosphatases [J]. Mol Oncol, 2021, 15(1): 228-245. doi:10.1002/1878-0261.12838
doi: 10.1002/1878-0261.12838 |
40 |
OVERHOFF M, TELLKAMP F, HESS S, et al. Autophagy regulates neuronal excitability by controlling cAMP/protein kinase A signaling at the synapse [J]. EMBO J, 2022, 41(22): e110963. doi:10.15252/embj.2022110963
doi: 10.15252/embj.2022110963 |
41 |
CHENG L, XU Y, LONG Y, et al. Liraglutide attenuates palmitate-induced apoptosis via PKA/β-catenin/Bcl-2/Bax pathway in MC3T3-E1 cells [J]. Naunyn Schmiedebergs Arch Pharmacol, 2024, 397(1): 329-341. doi:10.1007/s00210-023-02572-9
doi: 10.1007/s00210-023-02572-9 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||