The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (8): 1142-1147.doi: 10.3969/j.issn.1006-5725.2024.08.021
• Medical Examination and Clinical Diagnosis • Previous Articles Next Articles
Rui ZHANG,Ying ZHOU,Wenji NI,Ya HUANG,Dandan LI,Tao JIN,Yong. ZHONG()
Received:
2023-08-31
Online:
2024-04-25
Published:
2024-04-19
Contact:
Yong. ZHONG
E-mail:zhongyongnj@163.com
CLC Number:
Rui ZHANG,Ying ZHOU,Wenji NI,Ya HUANG,Dandan LI,Tao JIN,Yong. ZHONG. Application value of artificial intelligence⁃basedretinal microvascular analysis in diagnosis of diabetes complications[J]. The Journal of Practical Medicine, 2024, 40(8): 1142-1147.
Tab.1
General information of normal control group, diabetes without DR group and diabetes with DR group"
项目 | 健康对照组(n = 119) | 糖尿病无DR组(n = 100) | 糖尿病并发DR组(n = 86) | F/χ2值 | P值 |
---|---|---|---|---|---|
男性[例(%)] | 57(48.00) | 88(88.00)ab | 36(42.00)ab | 32.70 | < 0.001 |
年龄(岁) | 46.03 ± 5.31 | 51.02 ± 12.53a | 53.42 ± 10.73a | 15.641 | < 0.001 |
身高(cm) | 168.27 ± 0.67 | 176.67 ± 6.60 | 168.08 ± 0.86 | 1.731 | < 0.001 |
体质量(kg) | 64.51 ± 0.86 | 75.41 ± 1.27a | 70.55 ± 1.21a | 29.482 | < 0.001 |
BMI(kg/m2) | 22.73 ± 0.20 | 25.71 ± 0.46a | 24.90 ± 0.32a | 25.451 | < 0.001 |
收缩压(mmol/L) | 109.37 ± 0.76 | 129.57 ± 1.96a | 126.72 ± 1.867a | 71.168 | < 0.001 |
舒张压(mmol/L) | 67.92 ± 0.79 | 78.83 ± 1.22a | 78.58 ± 1.13a | 45.445 | < 0.001 |
TC(mmol/L) | 4.47 ± 0.05 | 4.97 ± 0.11a | 5.16 ± 0.16a | 17.431 | < 0.001 |
TG(mmol/L) | 0.85 ± 0.03 | 2.19 ± 0.17a | 2.34 ± 0.20a | 43.666 | < 0.001 |
LDL-C(mmol/L) | 2.22 ± 0.04 | 2.48 ± 0.09a | 2.81 ± 0.11ab | 17.573 | < 0.001 |
HDL-C(mmol/L) | 1.41 ± 0.03 | 1.24 ± 0.03a | 1.18 ± 0.05a | 17.160 | < 0.001 |
BUA(μmol/L) | 285.18 ± 4.86 | 387.08 ± 10.32a | 351.51 ± 11.08ab | 43.031 | < 0.001 |
SCR(μmol/L) | 67.96 ± 1.17 | 72.00 ± 1.60 | 72.53 ± 3.37 | 1.743 | 0.177 |
eGFR[mL/min·1.73 m2] | 102.37 ± 1.26 | 101.70 ± 1.27 | 100.04 ± 2.17 | 0.574 | 0.564 |
Tab.2
Comparison of related indicators between healthy control group, diabetes without DR group and diabetes with DR group"
组别 | 健康对照组(n = 119) | 糖尿病无DR组(n = 100) | 糖尿病并发DR组(n = 86) | H值 | P值 |
---|---|---|---|---|---|
FBG | 4.80(4.60,5.10) | 6.30(5.95,7.10)ab | 8.20(6.40,9.75)ab | 194.394 | < 0.001 |
2hPBG | 5.10(4.55,5.800) | 6.80(6.40,7.55)ab | 13.40(10.60,17.40)ab | 200.346 | < 0.001 |
HbA1c | 5.30(5.10,5.600) | 10.70(8.20,12.60)ab | 8.40(7.05,9.80)ab | 188.033 | < 0.001 |
CRAE | 0.022(0.020,0.026) | 0.021(0.020,0.025)a | 0.020(0.016,0.025)ab | 7.986 | 0.018 |
CRVE | 0.030(0.027,0.035) | 0.030(0.027,0.037) | 0.030(0.025,0.034) | 0.491 | 0.782 |
AVR | 0.730(0.670,0.780) | 0.700(0.670,0.740)a | 0.680(0.635,0.765)a | 11.110 | 0.004 |
Tab.3
Comparison of retinal microvascular indexes in 86 patients with diabetes complicated with DR by DN or not"
组别 | 无DN组 (n = 50) | 并发DN组(n = 36) | t值 | P值 |
---|---|---|---|---|
年龄(岁) | 53.30 ± 10.43 | 55.27 ± 12.31 | -0.734 | 0.465 |
糖尿病病史(年) | 9.61 ± 7.14 | 14.29 ± 8.44 | -2.455 | 0.017 |
CRAE | 0.021 ± 0.006 | 0.020 ± 0.006 | 1.117 | 0.268 |
CRVE | 0.034 ± 0.027 | 0.029 ± 0.009 | 0.899 | 0.371 |
AVR | 0.698 ± 0.131 | 0.687 ± 0.107 | 0.383 | 0.703 |
出血总面积(mm2) | 0.170 ± 0.378 | 0.299 ± 0.372 | -1.389 | 0.169 |
出血最大面积(mm2) | 0.056 ± 0.102 | 0.092 ± 0.101 | -1.418 | 0.161 |
出血总个数(个) | 7.21 ± 11.54 | 17.76 ± 19.67 | -2.465 | 0.019 |
渗出总面积(mm2) | 0.100 ± 0.179 | 0.581 ± 0.992 | -2.454 | 0.021 |
渗出最大面积(mm2) | 0.049 ± 0.065 | 0.163 ± 0.276 | -2.081 | 0.047 |
渗出总个数(个) | 6.13 ± 14.67 | 19.96 ± 30.80 | -2.159 | 0.039 |
Tab.4
Binary logistic regression analysis of the influence of retinal microvascular disease indicators on DN in diabetes"
自变量 | OR | 95%CI | P值 |
---|---|---|---|
LogCRAE | 0.031 | 0.000 ~ 3.276 | 0.144 |
LogCRVE | 0.253 | 0.002 ~ 5.279 | 0.098 |
AVR | 0.699 | 0.010 ~ 2.517 | 0.466 |
出血总面积 | 2.404 | 0.656 ~ 2.404 | 0.185 |
出血最大面积 | 2.019 | 0.235 ~ 2.198 | 0.173 |
出血总个数 | 1.046 | 1.009 ~ 1.048 | 0.013 |
渗出总面积 | 1.453 | 1.434 ~ 1.498 | 0.021 |
渗出最大面积 | 1.645 | 1.032 ~ 1.734 | 0.011 |
渗出总个数 | 1.033 | 1.001 ~ 1.067 | 0.045 |
1 |
KHARROUBI A T, DARWISH H M. Diabetes mellitus: The epidemic of the century[J]. World J Diabetes, 2015, 6(6):850-867. doi:10.4239/wjd.v6.i6.850
doi: 10.4239/wjd.v6.i6.850 |
2 | MAGLIANO D J, BOYKO E J. IDF Diabetes Atlas 10th edition scientific committee. IDF Diabetes Atlas [C]. 10th ed. Brussels: International Diabetes Federation, 2021. |
3 |
HAUKKA J, SANDHOLM N, VALO E, et al. Novel linkage peaks discovered for diabetic nephropathy in individuals with type 1 diabetes[J]. Diabetes, 2021, 70(4):986-995. doi:10.2337/db20-0158
doi: 10.2337/db20-0158 |
4 |
LV K, CUI C, FAN R, et al. Detection of diabetic patients in people with normal fasting glucose using machine learning[J]. BMC Med, 2023, 21(1):342-354. doi:10.1186/s12916-023-03045-9
doi: 10.1186/s12916-023-03045-9 |
5 |
国家老年医学中心,中华医学会老年医学分会,中国老年保健协会糖尿病专业委员会,等. 中国老年糖尿病诊疗指南(2021年版)[J]. 中华糖尿病杂志,2021,13(1):14-46. doi:10.3760/cma.j.cn115791-20201209-00707
doi: 10.3760/cma.j.cn115791-20201209-00707 |
6 | 中华医学会眼科学分会眼底病学组,中国医师协会眼科医师分会眼底病学组,许迅,等.我国糖尿病视网膜病变临床诊疗指南(2022年)-基于循证医学修订[J]. 中华眼底病杂志, 2023, 39(2):99-124. |
7 |
ALICIC R Z, COX E J, NEUMILLER J J, et al. Incretin drugs in diabetic kidney disease: biological mechanisms and clinical evidence[J]. Nat Rev Nephrol, 2021, 17(4):227-244. doi:10.1038/s41581-020-00367-2
doi: 10.1038/s41581-020-00367-2 |
8 |
MA Y C, ZUO L, CHEN J H, et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease[J]. J Am Soc Nephrol, 2006, 17(10):2937-2944. doi:10.1681/asn.2006040368
doi: 10.1681/asn.2006040368 |
9 |
HUBBARD L D, BROTHERS R J, KING W N, et al. Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study[J]. Ophthalmology, 1999, 106(12):2269-2280. doi:10.1016/s0161-6420(99)90525-0
doi: 10.1016/s0161-6420(99)90525-0 |
10 | GBD 2019 Blindness and Vision Impairment Collaborators, Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020:the Right to Sight: an analysis for the Global Burden of Disease Study[J]. Lancet Glob Health, 2021, 9(2):e144-e160. |
11 |
RUIZ O M, RODRIGUES D R, LAVOZ C, et al. Special issue diabetic nephropathy:diagnosis, prevention and treatment[J].Clin Med, 2020, 9(3):813. doi:10.3390/jcm9030813
doi: 10.3390/jcm9030813 |
12 |
WANG Y, ZHAO H, WANG Q, et al. Chinese herbal medicine in ameliorating diabetic kidney disease via activating autophagy[J]. Diabetes Res, 2019,2019:9030893. doi:10.1155/2019/9030893
doi: 10.1155/2019/9030893 |
13 |
MORENO J A, GOMEZ-GUERRERO C, MAS S, et al. Targeting inflammation in diabetic nephropathy: a tale of hope[J]. Expert Opin Investig Drug, 2018, 27(11): 917-930. doi:10.1080/13543784.2018.1538352
doi: 10.1080/13543784.2018.1538352 |
14 |
张喆,刘晓怡,叶佩仪,等. 2型糖尿病合并非糖尿病肾脏疾病患者临床及病理特征[J]. 实用医学杂志, 2023, 39(10):1253-1257. doi:10.3969/j.issn.1006-5725.2023.10.011
doi: 10.3969/j.issn.1006-5725.2023.10.011 |
15 |
CHEN Y, LIU Q, SHAN Z, et al. Catalpol ameliorates podocyte injury by stabilizing cytoskeleton and enhancing autophagy in diabetic nephropathy[J]. Front Pharmacol, 2019, 10:1477. doi:10.3389/fphar.2019.01477
doi: 10.3389/fphar.2019.01477 |
16 |
MATOBA K, TAKEDA Y, NAGAI Y, et al. Unraveling the role of inflammation in the pathogenesis of diabetic kidney disease[J].Int J Mol Sci, 2019, 20:3393. doi:10.3390/ijms20143393
doi: 10.3390/ijms20143393 |
17 |
RAO V, RAO L B V, TAN S H, et al. Diabetic nephropathy: an update on pathogenesis and drug development[J]. Diabetes Metab Syndr,2019, 13(1): 754-762. doi:10.1016/j.dsx.2018.11.054
doi: 10.1016/j.dsx.2018.11.054 |
18 |
WARREN A M, KNUDSEN S T, COOPER M E. Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies[J]. Expert Opin Ther Targets, 2019, 23(7): 579-591. doi:10.1080/14728222.2019.1624721
doi: 10.1080/14728222.2019.1624721 |
19 |
李继红,牛梦琦. 血管内皮生长因子水平对2型糖尿病患者并发视网膜微血管病变的预测价值[J]. 实用医学杂志, 2022, 38(8):1001-1005. doi:10.3969/j.issn.1006-5725.2022.08.017
doi: 10.3969/j.issn.1006-5725.2022.08.017 |
20 |
HE J, CAO T, XU F, et al. Artificial intelligence-based screening for diabetic retinopathy at community hospital[J]. Eye, 2020, 34(3):572-576. doi:10.1038/s41433-019-0562-4
doi: 10.1038/s41433-019-0562-4 |
21 |
KLEIN R, MYERS C E, LEE K E, et al. Changes in retinal vessel diameter and incidence and progression of diabetic retinopathy[J]. Arch Ophthalmol, 2012, 130(6): 749-755. doi:10.1001/archophthalmol.2011.2560
doi: 10.1001/archophthalmol.2011.2560 |
22 |
NGUYEN T T, WANG J J, SHARRETT A R, et al.Relationship of retinal vascular caliber with diabetes and retinopathy:the Multi-Ethnic Study of Atherosclerosis MESA)[J]. Diabetes Care,2008, 31(3):544-549. doi:10.2337/dc07-1528
doi: 10.2337/dc07-1528 |
23 |
LIEW G, MITCHELL P, WONG T Y, et al. Retinal microvascular signs are associated with chronic kidney disease in persons with and without diabetes[J]. Kidney Blood Press Res, 2012, 35(6):589-594. doi:10.1159/000339173
doi: 10.1159/000339173 |
24 |
TZIOMALOS K, ATHYROS V G. Diabetic nephropathy:new risk factors and improvements in diagnosis[J]. Rev Diabet Stud, 2015, 12(1/2):110-118. doi:10.1900/rds.2015.12.110
doi: 10.1900/rds.2015.12.110 |
25 |
IZZEDINE H, BODAGHI B, LAUNAY-VACHER V, et al. Eye and kidney:from clinical findings to genetic explanations[J]. J Am Soc Nephrol, 2003, 14(2):516-529. doi:10.1097/01.asn.0000051705.97966.ad
doi: 10.1097/01.asn.0000051705.97966.ad |
[1] | Liangjiang HUANG,Dewen MAO,Jinghui ZHENG,Minggang WANG,Chun YAO. Application of artificial intelligence in HE risk prediction modelling and research advances [J]. The Journal of Practical Medicine, 2024, 40(3): 289-294. |
[2] | Jingfang WAN,Kehong. CHEN. Advances in research on optimal dialysate bicarbonate concentration for maintenance hemodialysis patients [J]. The Journal of Practical Medicine, 2024, 40(18): 2520-2524. |
[3] | Qingdong YAO,Chengbing ZHANG,Jun FU,Peng WANG,Bin LONG,Haifeng. LIU. The correlation analysis of coronary artery plaque AI quantitative parameter with FFR-CT in coronary CT angiography [J]. The Journal of Practical Medicine, 2024, 40(17): 2489-2494. |
[4] | Qicheng JIN,Jianghong LV,Lilong XU,Hongfen WEI,Tongfang TANG,Chuanju ZHANG,Shiyan. LI. Impacts of different ultrasound imaging parameters on the differential diagnosis of benign and malignant breast nodules with S⁃Detect technology [J]. The Journal of Practical Medicine, 2023, 39(22): 2891-2897. |
[5] | Yongming TIAN,Shifeng WU,Xi. ZHAO. Cluster analysis of TCM syndrome types in patients with type 2 diabetic nephropathy and its relationship with disease staging [J]. The Journal of Practical Medicine, 2023, 39(22): 2994-3000. |
[6] | ZHANG Zhe, LIU Xiaoyi, YE Peiyi, XIE Chao, KONG Yaozhong. . Clinical and pathological characteristics of patients with type 2 diabetes mellitus complicated with non⁃dia⁃ betic renal disease [J]. The Journal of Practical Medicine, 2023, 39(10): 1253-1257. |
[7] |
WANG Lexin , LIU Chao, MA Tianlong, YANG Anning, XIONG Jiantuan, WU Kai, JIAO Yun, BAI Zhigang, JIANG Yideng, MA Shengchao, ZHANG Xu, LU Guanjun.
Role of LncRNA H19 in pyrophosis of glomerular podocyte induced by high glucose [J]. The Journal of Practical Medicine, 2023, 39(1): 12-20. |
[8] |
LI Cong, KONG Lingcong, HU Lianting, YUAN Haiyun, REN Yun, ZHAO Hanpeng, WANG Yan, CHEN Xuanhui, LIU Huazhang, KUANG Yu, LIANG Huiying, YU Honghua, YANG Xiaohong. .
A clinical study on intelligent prediction of perioperative outcomes in congenital heart disease based on optical coherence tomography angiography technology [J]. The Journal of Practical Medicine, 2022, 38(9): 1136-1140. |
[9] |
LIAO Shuting, YU Xiangrong. .
Application of spectral CT and artificial intelligence in the diagnosis of thyroid cancer [J]. The Journal of Practical Medicine, 2022, 38(2): 129-1133. |
[10] |
WANG Shuang, FENG Yanhong..
Evaluation of right ventricular systolic function by fully automated three ⁃ dimensional echocardiography right ventricular quantification software in patients with chronic pulmonary heart disease [J]. The Journal of Practical Medicine, 2022, 38(19): 2476-2480. |
[11] |
YANG Linlin, LIU Gang, YI Rui, WANG Juan, XIE Zhenhua, LIU Chengqiong, CHEN Jie.
Research progress on risk prediction of acute renal injury
[J]. The Journal of Practical Medicine, 2022, 38(18): 2367-2372.
|
[12] |
AN Wei, LIANG Haoyue, KONG Xiaodong..
Progress on Raman spectroscopy for differential diagnosis of renal diseases [J]. The Journal of Practical Medicine, 2022, 38(16): 2094-2099. |
[13] |
LI Yingna, DONG Lan, LIU Wanshan, QUAN Linfei, HE Feng..
Pathogenesis of early diabetic nephropathy:A bioinformatics analysis [J]. The Journal of Practical Medicine, 2022, 38(14): 1736-1742. |
[14] | LUO Gang, PAN Si⁃lin, QIAO Sibo, PANG Shanchen, CHEN Taotao, SUN Lingyu, DONG Yukun.. Deep learning technology for automatic recognition of fetal echocardiography images [J]. The Journal of Practical Medicine, 2022, 38(14): 1830-1833. |
[15] |
YANG Lei, TANG Can..
CAD machine diagnosis system in ultrasonic diagnosis of breast cancer
[J]. The Journal of Practical Medicine, 2022, 38(1): 106-110.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||