1 |
SIEBEN C J, HARRIS P C. Experimental Models of Polycystic Kidney Disease: Applications and Therapeutic Testing[J]. Kidney360, 2023, 4(8): 1155-1173. doi:10.34067/kid.0000000000000209
doi: 10.34067/kid.0000000000000209
|
2 |
LU H, GALEANO M C R, OTT E, et al. Mutations in DZIP1 L,which encodes a ciliary-transition-zone protein,cause autosomal recessive polycystic kidney disease[J]. Nat Genet, 2017, 49(7): 1025-1034. doi:10.1038/ng.3871
doi: 10.1038/ng.3871
|
3 |
中华医学会医学遗传学分会遗传病临床实践指南撰写组. Leber遗传性视神经病变的临床实践指南[J]. 中华医学遗传学杂志, 2020, 37(3): 284-288. doi:10.3760/cma.j.issn.1003-9406.2020.03.010
doi: 10.3760/cma.j.issn.1003-9406.2020.03.010
|
4 |
卢晓梅,霍本刚,黄楠,等. 透析血流量对老年维持性血液透析患者预后的影响[J]. 实用医学杂志, 2023, 39(10): 1269-1273. doi:10.3969/j.issn.1006-5725.2023.10.014
doi: 10.3969/j.issn.1006-5725.2023.10.014
|
5 |
BERGMANN C, GUAYWOODFORD L M, HARRIS P C, et al. Polycystic kidney disease[J]. Nat Rev Dis Primers, 2018, 4(1):50. doi:10.1038/s41572-018-0047-y
doi: 10.1038/s41572-018-0047-y
|
6 |
CORDIDO A, VIZOSOGONZALEZ M, GARCIAGONZALEZ M A. Molecular Pathophysiology of Autosomal Recessive Polycystic Kidney Disease[J]. Int J Mol Sci, 2021, 22(12): 6523. doi:10.3390/ijms22126523
doi: 10.3390/ijms22126523
|
7 |
DELL K M. The spectrum of polycystic kidney disease in children[J]. Adv Chronic Kidney Dis, 2011, 18(5):339-347. doi:10.1053/j.ackd.2011.05.001
doi: 10.1053/j.ackd.2011.05.001
|
8 |
CHENGBING W, JIA L, KENICHI T,et al. Centrosomal protein dzip1l binds cby,promotes ciliary bud formation,and acts redundantly with Bromi to regulate ciliogenesis in the mouse[J]. Development, 2018, 145: 164236. doi:10.1242/dev.164236
doi: 10.1242/dev.164236
|
9 |
PARASKEVI G, TAYLOR R. The genetics of Autosomal Recessive Polycystic Kidney Disease (ARPKD)[J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(4): 166348. doi:10.1016/j.bbadis.2022.166348
doi: 10.1016/j.bbadis.2022.166348
|
10 |
BERGMANN C, SENDEREK J, WINDELEN E, et al. Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease(ARPKD)[J]. Kidney Int, 2005, 67(3): 829-848. doi:10.1111/j.1523-1755.2005.00148.x
doi: 10.1111/j.1523-1755.2005.00148.x
|
11 |
BURGMAIER K, BRINKER L, ERGER F, et al. Refining genotype-phenotype correlations in 304 patients with autosomal recessive polycystic kidney disease and PKHD1 gene variants[J]. Kidney Int, 2021, 100(3): 650-659.
|
12 |
赵延凤,黄宇戈. 婴儿型多囊肾1例临床表型与基因型分析[J]. 临床儿科志, 2018, 36(6): 420-423.
|
13 |
何天文,卢建,陈创奇,等. 基于二代测序技术的常染色体隐性遗传性多囊肾病家系胚胎植入前遗传学分析[J]. 检验医学, 2022, 37(3): 257-263. doi:10.3969/j.issn.1673-8640.2022.03.014
doi: 10.3969/j.issn.1673-8640.2022.03.014
|
14 |
ERGER F, BRÜCHLE N O, GEMBRUCH U, et al. Prenatal ultrasound, genotype, and outcome in a large cohort of prenatally affected patients with autosomal-recessive polycystic kidney disease and other hereditary cystic kidney diseases[J]. Arch Gynecol Obstet, 2017, 295(4): 897-906. doi:10.1007/s00404-017-4336-6
doi: 10.1007/s00404-017-4336-6
|
15 |
SIMONINI C, FRÖSCHEN E M, NADAL J, et al. Prenatal ultrasound in fetuses with polycystic kidney appearance-expanding the diagnostic algorithm[J]. Arch Gynecol Obstet, 2023, 308: 1287-1300. doi:10.1007/s00404-022-06814-8
doi: 10.1007/s00404-022-06814-8
|
16 |
陈大蔚,章志国,郝燕,等. 成骨发育不全家系遗传学分析及植入前遗传学诊断研究[J]. 中国实用妇科与产科杂志, 2018, 34(4): 433-438.
|
17 |
QIN M, ZHU X, ZHANG Z, et al. Genetic analysis and preimplantation genetic diagnosis of Chinese Marfan syndrome patients[J]. J Genet Genomics, 2019, 46(6): 319-323. doi:10.1016/j.jgg.2019.04.003
doi: 10.1016/j.jgg.2019.04.003
|
18 |
YEAGER S, MEHTA S, SODHI M, et al. Can preimplantation genetic diagnosis be used for monogenic endocrine diseases[J]? J Pediatr Endocrinol Metab, 2019, 32(12): 1305-1310. doi:10.1515/jpem-2019-0184
doi: 10.1515/jpem-2019-0184
|
19 |
DE R M, BERCKMOES V. Preimplantation Genetic Testing for Monogenic Disorders[J]. Genes(Basel), 2020, 11(8): 871. doi:10.3390/genes11080871
doi: 10.3390/genes11080871
|
20 |
CHEN D, XU Y, DING C, et al. The inconsistency between two major aneuploidy-screening platforms-single-nucleotide polymorphism array and next-generation sequencing-in the detection of embryo mosaicism[J]. BMC Genomics, 2022, 23(1): 62. doi:10.1186/s12864-022-08294-1
doi: 10.1186/s12864-022-08294-1
|
21 |
DOROFTEI B, ILIE O D, ANTON N, et al. A Mini-Review Regarding the Clinical Outcomes of In Vitro Fertilization (IVF) Following Pre-Implantation Genetic Testing (PGT)-Next Generation Sequencing (NGS) Approach[J]. Diagnostics, 2022, 12(8): 1911. doi:10.3390/diagnostics12081911
doi: 10.3390/diagnostics12081911
|
22 |
ESMAEILI F, NARIMANI Z, VASIGHI M. Discovering SNP-disease relationships in genome-wide SNP data using an improved harmony search based on SNP locus and genetic inheritance patterns[J]. PLoS One, 2023, 18(10): e0292266. doi:10.1371/journal.pone.0292266
doi: 10.1371/journal.pone.0292266
|
23 |
HYMAN L B, CHRISTOPHER C R, ROMERO P A. Competitive SNP-LAMP probes for rapid and robust single-nucleotide polymorphism detection[J]. Cell Rep Methods, 2022, 2(7): 100242. doi:10.1016/j.crmeth.2022.100242
doi: 10.1016/j.crmeth.2022.100242
|
24 |
GRECO E, LITWICKA K, MINASI M G, et al. Preimplantation Genetic Testing: Where We Are Today[J]. Int J Mol Sci, 2020, 21(12): 4381. doi:10.3390/ijms21124381
doi: 10.3390/ijms21124381
|
25 |
CECHOVA M, MIGA K H. Comprehensive variant discovery in the era of complete human reference genomes[J]. Nat Methods, 2023, 20(1): 17-19. doi:10.1038/s41592-022-01740-8
doi: 10.1038/s41592-022-01740-8
|