The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (17): 2767-2771.doi: 10.3969/j.issn.1006-5725.2025.17.023
• Reviews • Previous Articles
Received:
2025-07-01
Online:
2025-09-10
Published:
2025-09-05
Contact:
Yang ZHAO
E-mail:730108793@126.com
CLC Number:
Lu CAO,Haiyan TU,Yang ZHAO. Research progress of biomarkers in the monitoring of vitiligo stages[J]. The Journal of Practical Medicine, 2025, 41(17): 2767-2771.
[1] |
PEREZ-BOOTELLO J, COVA-MARTIN R, NAHARRO-RODRIGUEZ J, et al. Vitiligo: Pathogenesis and New and Emerging Treatments[J]. Int J Mol Sci, 2023, 24(24):17306. doi:10.3390/ijms242417306
doi: 10.3390/ijms242417306 |
[2] |
RAMOT Y, ROSENBERG V, ZHOU L, et al. Epidemiology and Treatment Patterns of Patients with Vitiligo: A Real-World Analysis[J]. Adv The, 2024, 41(7):2890-2906. doi:10.1007/s12325-024-02875-0
doi: 10.1007/s12325-024-02875-0 |
[3] |
BELLEI B, PAPACCIO F, PICARDO M. Regenerative Medicine-Based Treatment for Vitiligo: An Overview[J]. Biomedicines, 2022,10(11):2744. doi:10.3390/biomedicines10112744
doi: 10.3390/biomedicines10112744 |
[4] | JOGE R R, KATHANE P U, JOSHI S H. Vitiligo: A Narrative Review[J]. Cureus, 2022, 14(9):e29307. |
[5] | 曹露, 赵阳. 皮肤移植治疗稳定期白癜风的研究进展[J]. 实用医学杂志, 2025,41(2):300-304. |
[6] |
YADAV A K, SINGH P, KHUNGER N. Clinicopathologic Analysis of Stable and Unstable Vitiligo: A Study of 66 Cases[J]. Am J Dermatopathol, 2016, 38(8):608-613. doi:10.1097/dad.0000000000000539
doi: 10.1097/dad.0000000000000539 |
[7] |
ABDALLAH M, LOTFI R, OTHMAN W, et al. Assessment of tissue FoxP3+, CD4+ and CD8+ T-cells in active and stable nonsegmental vitiligo[J]. Int J Dermatol, 2014, 53(8):940-946. doi:10.1111/ijd.12160
doi: 10.1111/ijd.12160 |
[8] |
STRASSNER J P, RASHIGHI M, AHMED R M, et al. Suction blistering the lesional skin of vitiligo patients reveals useful biomarkers of disease activity[J]. J Am Acad Dermatol, 2017, 76(5):847-855. doi:10.1016/j.jaad.2016.12.021
doi: 10.1016/j.jaad.2016.12.021 |
[9] |
ZHANG B, LI T, TANG Y, et al. The effects of 308-nm excimer laser on the infiltration of CD4+, CD8+ T-cells, and regulatory T cells in the lesional skin of patients at active and stable stages of nonsegmental vitiligo[J]. J Dermatolog Treat, 2021, 32(6):580-584. doi:10.1080/09546634.2019.1687825
doi: 10.1080/09546634.2019.1687825 |
[10] |
NG C Y, CHAN Y P, CHIU Y C, et al. Targeting the elevated IFN-γ in vitiligo patients by human anti- IFN-γ monoclonal antibody hampers direct cytotoxicity in melanocyte[J]. J Dermatol Sci, 2023, 110(3):78-88. doi:10.1016/j.jdermsci.2023.04.006
doi: 10.1016/j.jdermsci.2023.04.006 |
[11] |
LIN F, HU W, XU W, et al. CXCL9 as a key biomarker of vitiligo activity and prediction of the success of cultured melanocyte transplantation[J]. Sci Rep, 2021, 11(1):18298. doi:10.1038/s41598-021-97296-2
doi: 10.1038/s41598-021-97296-2 |
[12] |
MARCHIORO H Z, SILVA DE CASTRO C C, FAVA V M, et al. Update on the pathogenesis of vitiligo[J]. An Bras Dermatol, 2022,97(4):478-490. doi:10.1016/j.abd.2021.09.008
doi: 10.1016/j.abd.2021.09.008 |
[13] |
DOSS R W, EL-RIFAIE A A, ABDEL-WAHAB A M, et al. Heat Shock Protein-70 Expression in Vitiligo and its Relation to the Disease Activity[J]. Indian J Dermatol, 2016, 61(4):408-412. doi:10.4103/0019-5154.185704
doi: 10.4103/0019-5154.185704 |
[14] |
OCHOA-RAMÍREZ L A, DÍAZ-CAMACHO S P, MELLADO-CORRALES S N, et al. Analysis of the heat shock protein 70 (HSP70) genetic variants in nonsegmental vitiligo patients[J]. Int J Dermatol, 2023, 62(2):225-230. doi:10.1111/ijd.16487
doi: 10.1111/ijd.16487 |
[15] |
FEGHAHATI F S, GHAFOURI-FARD S. A comprehensive outline of the role of non-coding RNAs in vitiligo[J]. Biochem Biophys Rep, 2025,41:101916. doi:10.1016/j.bbrep.2025.101916
doi: 10.1016/j.bbrep.2025.101916 |
[16] | ŠAHMATOVA L, TANKOV S, PRANS E, et al. MicroRNA-155 is Dysregulated in the Skin of Patients with Vitiligo and Inhibits Melanogenesis-associated Genes in Melanocytes and Keratinocytes[J]. Acta Derm Venereol, 2016,96(6):742-747. |
[17] |
BRAHMBHATT H D, GUPTA R, GUPTA A, et al. The long noncoding RNA MALAT1 suppresses miR-211 to confer protection from ultraviolet-mediated DNA damage in vitiligo epidermis by upregulating sirtuin 1[J]. Br J Dermatol, 2021, 184(6):1132-1142. doi:10.1111/bjd.19666
doi: 10.1111/bjd.19666 |
[18] |
MANSURI M S, SINGH M, DWIVEDI M, et al. MicroRNA profiling reveals differentially expressed microRNA signatures from the skin of patients with nonsegmental vitiligo[J]. Br J Dermatol, 2014, 171(5):1263-1267. doi:10.1111/bjd.13109
doi: 10.1111/bjd.13109 |
[19] |
ABDALLAH M, EL-MOFTY M, ANBAR T, et al. CXCL-10 and Interleukin-6 are reliable serum markers for vitiligo activity: A multicenter cross-sectional study[J]. Pigment Cell Melanoma Res, 2018, 31(2):330-336. doi:10.1111/pcmr.12667
doi: 10.1111/pcmr.12667 |
[20] | UTTMANI B M, ADYA K A, INAMADAR A C. Serum interleukin-6 and high sensitivity C-reactive protein levels and their correlation with the vitiligo disease activity and extent: A cross-sectional study of 58 patients[J]. J Cutan Aesthet Surg, 2024, 17(3):266-271. |
[21] |
BELPAIRE A, VAN GEEL N, SPEECKAERT R. From IL-17 to IFN-γ in inflammatory skin disorders: Is transdifferentiation a potential treatment target?[J]. Front Immunol, 2022, 13:932265. doi:10.3389/fimmu.2022.932265
doi: 10.3389/fimmu.2022.932265 |
[22] |
BERNARDINI N, SKROZA N, TOLINO E, et al. IL-17 and its role in inflammatory, autoimmune, and oncological skin diseases: state of art[J]. Int J Dermatol, 2020,59(4):406-411. doi:10.1111/ijd.14695
doi: 10.1111/ijd.14695 |
[23] |
NIERADKO-IWANICKA B, PRZYBYLSKA D, BORZĘCKI A. A case-control study on immunologic markers of patients with vitiligo[J]. Biomed Pharmacother, 2022, 156:113785. doi:10.1016/j.biopha.2022.113785
doi: 10.1016/j.biopha.2022.113785 |
[24] |
TOMASZEWSKA K, KOZŁOWSKA M, KASZUBA A, et al. Increased Serum Levels of IFN-γ, IL-1β, and IL-6 in Patients with Alopecia Areata and Nonsegmental Vitiligo[J]. Oxid Med Cell Longev, 2020, 2020:5693572. doi:10.1155/2020/5693572
doi: 10.1155/2020/5693572 |
[25] |
CUSTURONE P, DI BARTOLOMEO L, IRRERA N, et al. Role of Cytokines in Vitiligo: Pathogenesis and Possible Targets for Old and New Treatments[J]. Int J Mol Sci, 2021,22(21):11429. doi:10.3390/ijms222111429
doi: 10.3390/ijms222111429 |
[26] |
MAI Z M, BYRNE S N, LITTLE M P, et al. Solar UVR and Variations in Systemic Immune and Inflammation Markers[J]. JID Innov, 2021, 1(4):100055. doi:10.1016/j.xjidi.2021.100055
doi: 10.1016/j.xjidi.2021.100055 |
[27] |
HOSSAIN M R, ANSARY T M, KOMINE M, et al. Diversified Stimuli-Induced Inflammatory Pathways Cause Skin Pigmentation[J]. Int J Mol Sci, 2021, 22(8):3970. doi:10.3390/ijms22083970
doi: 10.3390/ijms22083970 |
[28] |
YANG L, YANG S, LEI J, et al. Role of chemokines and the corresponding receptors in vitiligo: A pilot study[J]. J Dermatol, 2018, 45(1):31-38. doi:10.1111/1346-8138.14004
doi: 10.1111/1346-8138.14004 |
[29] |
WANG X X, WANG Q Q, WU J Q, et al. Increased expression of CXCR3 and its ligands in patients with vitiligo and CXCL10 as a potential clinical marker for vitiligo[J]. Br J Dermatol, 2016, 174(6):1318-1326. doi:10.1111/bjd.14416
doi: 10.1111/bjd.14416 |
[30] |
ZHANG L, KANG Y, CHEN S, et al. Circulating CCL20: A potential biomarker for active vitiligo together with the number of Th1/17 cells[J]. J Dermatol Sci, 2019, 93(2):92-100. doi:10.1016/j.jdermsci.2018.12.005
doi: 10.1016/j.jdermsci.2018.12.005 |
[31] |
RICHMOND J M, MASTERJOHN E, CHU R, et al. CXCR3 Depleting Antibodies Prevent and Reverse Vitiligo in Mice[J]. J Invest Dermatol, 2017, 137(4):982-985. doi:10.1016/j.jid.2016.10.048
doi: 10.1016/j.jid.2016.10.048 |
[32] |
AULAKH S, GOEL S, KAUR L, GULATI S, et al. Differential expression of serum CXCL9 and CXCL10 levels in vitiligo patients and their correlation with disease severity and stability: A cross-sectional study[J]. Indian J Dermatol Venereol Leprol, 2025, 91(1):9-15. doi:10.25259/ijdvl_793_2023
doi: 10.25259/ijdvl_793_2023 |
[33] |
ERDOĞAN A, MUTLU H S, SOLAKOĞLU S. Autologously transplanted dermis-derived cells alleviated monobenzone-induced vitiligo in mouse[J]. Exp Dermatol, 2022, 31(9):1355-1363. doi:10.1111/exd.14603
doi: 10.1111/exd.14603 |
[34] |
CHALLA A, CHAUHAN S, PANGTI R, et al. Evaluation of clinical efficacy and laboratory indicators of non-cultured epidermal cell suspension and hair follicle cell suspension in surgical management of stable vitiligo: A randomized comparative trial[J]. J Cosmet Dermatol, 2022, 21(12):6958-6964. doi:10.1111/jocd.15407
doi: 10.1111/jocd.15407 |
[35] |
KAWAKAMI T. Surgical procedures and innovative approaches for vitiligo regenerative treatment and melanocytorrhagy[J]. J Dermatol, 2022, 49(4):391-401. doi:10.1111/1346-8138.16316
doi: 10.1111/1346-8138.16316 |
[36] |
HUO J, LIU T, LI F, et al. MicroRNA‑21‑5p protects melanocytes via targeting STAT3 and modulating Treg/Teff balance to alleviate vitiligo[J]. Mol Med Rep, 2021, 23(1):51. doi:10.3892/mmr.2020.11689
doi: 10.3892/mmr.2020.11689 |
[37] |
AGUENNOUZ M, GUARNERI F, OTERI R, et al. Serum levels of miRNA-21-5p in vitiligo patients and effects of miRNA-21-5p on SOX5, beta-catenin, CDK2 and MITF protein expression in normal human melanocytes[J]. J Dermatol Sci, 2021, 101(1):22-29. doi:10.1016/j.jdermsci.2020.10.014
doi: 10.1016/j.jdermsci.2020.10.014 |
[38] |
SHI Q, ZHANG W, GUO S, et al. Oxidative stress-induced overexpression of miR-25: The mechanism underlying the degeneration of melanocytes in vitiligo[J]. Cell Death Differ, 2016, 23(3):496-508. doi:10.1038/cdd.2015.117
doi: 10.1038/cdd.2015.117 |
[1] | Lu ZHAO,Huiwen ZHI,Yafeng LI. The role of biomarkers in the diagnosis and prediction of disease progression of IgA nephropathy [J]. The Journal of Practical Medicine, 2025, 41(9): 1267-1272. |
[2] | Huimin HUANG,Chenxin LIU,Yanting FANG,Peiyan. ZHENG. Diagnostic value of KL⁃6 detection in children diagnostic value of KL⁃6 detection in children with idiopathic pulmonary hemosiderosis [J]. The Journal of Practical Medicine, 2025, 41(4): 594-599. |
[3] | Zhao WANG,Jiepeng ZUO,Hang CHE,Lingyun REN,Zhe XU,Lei. WANG. Evaluation of plasma PPARγ as a potential diagnostic marker for female interstitial cystitis/painful bladder syndrome and its predictive model [J]. The Journal of Practical Medicine, 2025, 41(2): 258-263. |
[4] | Lu CAO,Yang. ZHAO. Research progress on skin grafting for the treatment of stable vitiligo [J]. The Journal of Practical Medicine, 2025, 41(2): 300-304. |
[5] | Rongyin GAO,Congchong WAN,Chuanwei YIN,Jinpeng LÜ. Research progress on the phototherapy in vitiligo [J]. The Journal of Practical Medicine, 2025, 41(17): 2646-2652. |
[6] | Yunfang ZHANG,Zheng LI,Xiaogai NIE,Yun GUAN,Qi CHEN,Yong YUAN. D⁃dimer/Alb ratio, IL⁃6 and FDP jointly predict poor outcomes post type A dissection [J]. The Journal of Practical Medicine, 2025, 41(17): 2755-2760. |
[7] | Xueying MA,Xiangming MA. Research progress on serum⁃based assessment methods for liver fibrosis in patients with non⁃alcoholic fatty liver disease [J]. The Journal of Practical Medicine, 2025, 41(15): 2290-2303. |
[8] | Junzhi LIU,Lei QIU,Kun XU,Jianwei LIU,Dehua HU,Hua ZHU,Cheng SHEN,Ming LU,Jiangang. CHEN. Establishment of a nomogram model for predicting pelvic lymph node metastasis in prostate cancer based on systemic immune-infiltration inflammation index [J]. The Journal of Practical Medicine, 2025, 41(15): 2349-2354. |
[9] | Jingwen LAI,Yuchuan ZHAO,Zhuhua WU,Xunxun CHEN,Kehao PENG,Yuhui CHEN,Ran WEI,Xiaoyu LAI,Jingyu. WANG. Research advances and challenges in tuberculosis⁃associated extracellular vesicle biomarkers [J]. The Journal of Practical Medicine, 2025, 41(14): 2278-2284. |
[10] | Shouping LIU,Yinlin TANG,Yanfang CHENG,Qian ZHOU. Analysis of coagulation and fibrinolysis biomarkers for prognostic assessment and clinical efficacy evaluation in patients with intracerebral hemorrhage [J]. The Journal of Practical Medicine, 2025, 41(12): 1846-1852. |
[11] | Yuexian LYU,Xiu BI,Ying LIU,Shujing CUI,Lixin ZHAO,Ge GAO,Jianxia WANG,Juan LI,Jun LI. The efficacy of plasma gasdermin D C⁃terminal fragment in the early diagnosis of sepsis [J]. The Journal of Practical Medicine, 2025, 41(12): 1899-1906. |
[12] | Linghui DAI,Weifeng LI. Research progress on mitochondrial homeostasis in vascular cognitive impairment [J]. The Journal of Practical Medicine, 2025, 41(12): 1936-1944. |
[13] | Juntian TANG,Peng NIE,Yongping XIAO,Yingyuan HUANG,Yun YANG,Jianhong YAN. The application of autologous NK cells in the treatment of advanced renal cell carcinoma and the changes of immune function and tumor markers in patients with advanced renal cell carcinoma [J]. The Journal of Practical Medicine, 2025, 41(11): 1674-1680. |
[14] | Xiao YANG,Tao WANG,Wei WANG,Yaohui PENG,Yan CHEN,Haiping ZENG,Bao YANG. Lipidomic profile of serum in colorectal cancer patients and its diagnostic significance [J]. The Journal of Practical Medicine, 2025, 41(11): 1742-1750. |
[15] | Guizhi KE,Yu HUANG,Liping FU,Binhua ZOU,Gang. LIU. Research progress on matrix⁃chondrocyte interactions in osteoarthritis [J]. The Journal of Practical Medicine, 2025, 41(10): 1590-1596. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||