The Journal of Practical Medicine ›› 2025, Vol. 41 ›› Issue (15): 2290-2303.doi: 10.3969/j.issn.1006-5725.2025.15.002
• Symposiums • Previous Articles
Received:
2025-02-21
Online:
2025-08-10
Published:
2025-08-11
Contact:
Xiangming MA
E-mail:brighter_ma@163.com
CLC Number:
Xueying MA,Xiangming MA. Research progress on serum⁃based assessment methods for liver fibrosis in patients with non⁃alcoholic fatty liver disease[J]. The Journal of Practical Medicine, 2025, 41(15): 2290-2303.
Tab.1
Diagnostic performance evaluation of serum-based models for NAFLD-related hepatic fibrosis"
模型 | 项目 | AUROC | 敏感度/% | 特异度/% | PPV/% | NPV/% | FP/% | FN/% |
---|---|---|---|---|---|---|---|---|
FIB-4 | 常用临界值 | |||||||
1.30[ | 0.72 | 76 | 53 | 73 | 57 | 32 | 10 | |
2.67[ | 0.73 | 82 | 43 | 40 | 83 | 66 | 10 | |
1.30[ | - | 37.0 | 69.0 | 7.0 | 95.0 | 29.6 | 3.5 | |
2.67[ | - | 12.0 | 98.0 | 9.0 | 99.0 | - | - | |
2.67[18-21](F3) | 0.73 ~ 0.83 | 31.9 | 95.7 | 66.0 | 85.0 | - | - | |
1.30[ | 0.80 | - | - | - | - | - | - | |
2.67[ | - | 61.5 | 90.5 | 64.0 | 89.6 | - | - | |
其他临界值 | ||||||||
0.37 ~ 3.25[ | 0.75 | 64.4 | 70 | 73.3 | 60.6 | - | - | |
1.24 ~ 1.45[ | 0.80 | 77.8 | 71.2 | 40.3 | 92.7 | - | - | |
1.51 ~ 2.24[ | 0.80 | 77.0 | 79.2 | 66.4 | 83.9 | - | - | |
1.65[ | 0.82 | 68.3 | 89.8 | - | - | - | - | |
3.25[ | 0.80 | 37.3 | 95.8 | 72.5 | 87.3 | - | - | |
3.25[ | - | 2.0 | 99.0 | 6.0 | 98.0 | - | - | |
5.31 ~ 10.62[ | 0.80 | 67.5 | 80.8 | 90.0 | 85.1 | - | - | |
1.92 ~ 2.48[ | 0.81 ~ 0.85 | 76.4 | 82.4 | 39.0 | 96.2 | - | - | |
NFS | 常用临界值 | |||||||
-1.455[ | 0.72 | 52.0 | 69.0 | 9.0 | 96.0 | - | - | |
0.676[ | 0.83 | 22.0 | 98.0 | 14.0 | 99.0 | 28.8 | 2.7 | |
0.670 ~ 0.676[ | 0.78 | 43.1 | 88.4 | 66.9 | 88.5 | - | - | |
0.675[ | 0.73 ~ 0.75 | - | - | - | - | - | - | |
0.675[ | - | 57.1 | 97.7 | 85.7 | 90.3 | - | - | |
其他临界值 | ||||||||
-1.1[ | 0.72 | 65.5 | 82.5 | 81.7 | 73.6 | |||
-26.93 ~ -2.16[ | 0.78 | 80.5 | 69.5 | - | - | - | - | |
-1.31 ~ 0.156[ | 0.78 | 78.2 | 71.7 | 58.4 | 82.1 | - | - | |
0.735[ | - | 68.4 | 88.3 | 53.0 | 93.5 | - | - | |
-0.014[ | 0.83 | 80.0 | 80.8 | 42.8 | 95.7 | |||
APRI | 常用临界值 | |||||||
1.0[ | 0.75 | 43.2 | 81.6 | 33.5 | 89.8 | - | - | |
1.0[ | - | 46.2 | 89.5 | 54.6 | 85.9 | - | - | |
1.5[ | 0.75 | 32.9 | 90.5 | 55.5 | 79.1 | - | - | |
其他临界值 | ||||||||
0.43-1.5[ | 0.70 | 59.3 | 77.1 | 67.5 | 70.6 | |||
0.452-0.50[ | 0.75 | 72.9 | 67.7 | 44.8 | 89.4 | - | - | |
0.54-0.98[ | 0.75 | 68.6 | 72.7 | 61.4 | 77.6 | - | - | |
0.54-2.00[ | 0.75 | 56.2 | 83.6 | 37.8 | 91.7 | |||
0.61[ | 0.75 | 68.3 | 26.5 | - | - | - | - | |
0.7[ | - | 65.4 | 84.2 | 53.1 | 89.9 | - | - | |
ELF | 常用临界值 | |||||||
9.8[ | 0.76 | 70.0 | 64.0 | 76.0 | 56.0 | 13.5 | 18.8 | |
9.8[ | 0.83 | 92.4 | 54.5 | 37.1 | 96.1 | - | - | |
10.5[ | 0.85 | 67.0 | 78.0 | 58.0 | 83.0 | 15.3 | 10.6 | |
9.8[ | 0.83 | - | - | - | - | - | - | |
10.5[ | 0.81 ~ 0.84 | - | - | - | - | - | - | |
9.8[ | 0.78 ~ 0.97 | - | - | - | - | - | - | |
10.5[ | 0.85 ~ 0.92 | - | - | - | - | - | - | |
其他临界值 | ||||||||
7.7[ | - | 93.0 | 34.0 | 38.0 | 92.0 | - | - | |
11.3[ | - | 36.0 | 96.0 | 81.0 | 78.0 | - | - |
Tab.2
Evaluation of the diagnostic value of a serum-based model for advanced fibrosis in nafld patients with BMI stratification"
项目 | AUROC | 临界值 | 敏感度/% | 特异度/% | PPV/% | NPV/% |
---|---|---|---|---|---|---|
BMI < 25 kg/m2 | ||||||
FIB-4 | 0.86(0.75 ~ 0.98) | 1.30[ 2.67 | 75 42 | 77 98 | 43 83 | 93 88 |
NFS | 0.85(0.73 ~ 0.96) | -1.455[ 0.676 | 67 8.3 | 85 98 | 50 50 | 92 82 |
APRI | 0.78(0.63 ~ 0.94) | 0.5[ 1.5 | 67 8.3 | 81 96 | 44 33 | 91 82 |
ELF | 0.82(0.76 ~ 0.87) | 9.8[ 11.3 | - | - | - | - |
0.82(合并T2DM) | - | - | - | - | ||
BMI ≥ 25 kg/m2 | ||||||
FIB-4 | 0.73(0.69 ~ 0.77) | 1.30[ 2.67 | 73 20 | 64 95 | 58 73 | 78 64 |
NFS | 0.69(0.64 ~ 0.73) | -1.455[ 0.676 | 81 22 | 45 93 | 49 66 | 78 64 |
APRI | 0.68(0.64 ~ 0.73) | 0.5[ 1.5 | 57 8.1 | 67 98.1 | 53 74 | 70 62 |
ELF(25 kg/m2 ≤ BMI < 30 kg/m2) | 0.83(0.78 ~ 0.87) | 9.8[ 11.3 | - | - | - | - |
0.83(合并T2DM) | - | - | - | - | ||
BMI < 30 kg/m2 | ||||||
FIB-4 | 0.78(0.73 ~ 0.83) | 1.30[ 2.67 | 77 23 | 67 97 | 54 82 | 85 71 |
0.78(0.65 ~ 0.91) | 1.30[ 2.67 | - - | - - | - - | - - | |
0.88(合并T2DM) | 1.3[ 2.67 | - - | - - | - - | - - | |
NFS | 0.75(0.69 ~ 0.80) | -1.455[ 0.676 | 72 11 | 65 98 | 52 71 | 82 68 |
0.81(0.68 ~ 0.93) | -1.45[ 0.68 | - - | - - | - - | - - | |
0.80(合并T2DM) | -1.455[ 0.676 | - - | - - | - - | - - | |
APRI | 0.73(0.67 ~ 0.80) | 0.5[ 1.5 | 59 13 | 72 98 | 52 81 | 77 69 |
0.75(合并T2DM) | 0.5[ 1.5 | - - | - - | - - | - - | |
ELF | 0.86(0.77 ~ 0.96) | 9.8[ 10.5 | - - | - - | - - | - - |
BMI ≥ 30 kg/m2 | ||||||
FIB-4 | 0.71(0.65 ~ 0.77) | 1.30[ 2.67 | 71 19 | 76 94 | 59 68 | 65 62 |
0.74(0.63 ~ 0.85) | 1.30[ 2.67 | - - | - - | - - | - - | |
0.79(合并T2DM) | 1.3[ 2.67 | - - | - - | - - | - - | |
NFS | 0.68(0.62 ~ 0.74) | -1.455[ 0.676 | 87 30 | 34 88 | 48 65 | 78 64 |
0.65(0.53 ~ 0.77) | -1.45[ 0.68 | - - | - - | - - | - - | |
0.70(合并T2DM) | -1.455[ 0.676 | - - | - - | - - | - - | |
APRI | 0.66(0.60 ~ 0.72) | 0.5[ 1.5 | 56 4 | 67 97 | 54 50 | 68 59 |
0.66(合并T2DM) | 0.5[ 1.5 | - - | - - | - - | - - | |
ELF | 0.85(0.77 ~ 0.94) | 9.8[ 10.5 | - - | - - | - - | - - |
0.84(0.80 ~ 0.88) | 9.8[ | - | - | - | - | |
0.84(合并T2DM) | 9.8[ 11.3 | - - | - - | - - | - - | |
BMI < 35 kg/m2 | ||||||
FIB-4 | 0.76(0.71 ~ 0.80) | 1.30[ 2.67 | 74 25 | 66 96 | 56 76 | 82 69 |
NFS | 0.71(0.69 ~ 0.78) | -1.455[ 0.676 | 78 17 | 58 96 | 52 69 | 82 66 |
APRI | 0.73(0.66 ~ 0.76) | 0.5[ 1.5 | 60 11 | 70 98 | 53 75 | 75 66 |
ELF | - | - | - | - | - | - |
BMI ≥ 35 kg/m2 | ||||||
FIB-4 | 0.69(0.60 ~ 0.79) | 1.30[ 2.67 | 73 8 | 65 96 | 61 57 | 76 59 |
NFS | 0.63(0.52 ~ 0.73) | -1.455[ 0.676 | 88 34 | 20 84 | 44 61 | 70 64 |
APRI | 0.63(0.53 ~ 0.74) | 0.5[ 1.5 | 49 0 | 67 97 | 52 0 | 64 57 |
ELF | - | - | - | - | - | - |
合并T2DM,不区分BMI | ||||||
FIB-4 | 0.70 | 1.3[ 2.67 | - - | - - | - - | - - |
0.75 | 1.3[ 2.67 | - - | - - | - - | - - | |
NFS | 0.70 | -1.455[ 0.676 | - - | - - | - - | - - |
0.72 | -1.455[ 0.676 | - - | - - | - - | - - | |
APRI | 0.68 | 0.5[ | - | - | - | - |
ELF | 0.82 | 9.8[ 11.3 | - - | - - | - - | - - |
Tab.3
Age and sex based comparison of serological diagnostic model efficacy in nafld liver fibrosis"
项目 | 临界值 | AUROC | 敏感度/% | 特异度/% | PPV/% | NPV/% | |
---|---|---|---|---|---|---|---|
年龄≤35岁 | |||||||
FIB-4 | 1.30[ | 0.60(0.40 ~ 0.81) | 0 | 97 | 0 | 89 | |
2.67 | 0 | 100 | 0 | 89 | |||
3.25 | 0 | 100 | 0 | 89 | |||
1.3[ | 0.68(合并T2DM) | - | - | - | - | ||
2.67 | - | - | - | - | |||
NFS | -1.455[ | 0.52(0.32 ~ 0.73) | 0 | 91 | 0 | 89 | |
0.676 | 0 | 100 | 0 | 89 | |||
-1.455[ | 0.54(合并T2DM) | - | - | - | - | ||
0.676 | - | - | - | - | |||
APRI | 0.5[ | 0.47(合并T2DM) | - | - | - | - | |
1.5 | - | - | - | - | |||
ELF | - | - | - | - | - | - | |
35岁<年龄≤45岁 | |||||||
FIB-4 | 1.30[ | 0.79(0.66 ~ 0.91) | 56 | 91 | 59 | 90 | |
2.67 | 17 | 100 | 100 | 84 | |||
3.25 | 6 | 100 | 100 | 82 | |||
NFS | -1.455[ | 0.86(0.76 ~ 0.96) | 78 | 80 | 48 | 94 | |
0.676 | 22 | 100 | 100 | 85 | |||
APRI | - | - | - | - | - | - | |
ELF | - | - | - | - | - | - | |
45岁 < 年龄 ≤ 55岁 | |||||||
FIB?4 | 1.30[ | 0.77(0.68 ~ 0.86) | 63 | 77 | 42 | 89 | |
2.67 | 12 | 98.7 | 71 | 81 | |||
3.25 | 5 | 99.9 | 93 | 80 | |||
NFS | -1.455[ | 0.81(0.73 ~ 0.89) | 81 | 65 | 38 | 93 | |
0.676 | 22 | 97.4 | 69 | 82 | |||
APRI | - | - | - | - | - | - | |
ELF | - | - | - | - | - | - | |
55岁 < 年龄 ≤ 64岁 | |||||||
FIB?4 | 1.30[ | 0.84(0.78 ~ 0.90) | 90 | 61 | 54 | 92 | |
2.67 | 30 | 97.6 | 86 | 73 | |||
3.25 | 20 | 100 | 100 | 71 | |||
NFS | -1.455[ | 0.83(0.64 ~ 0.80) | 95 | 44 | 47 | 94 | |
0.676 | 31 | 99.9 | 99 | 74 | |||
APRI | - | - | - | - | - | - | |
ELF | - | - | - | - | - | - | |
年龄35 ~ 65岁 | |||||||
FIB?4 | 1.3[ | 0.77(合并T2DM) | - | - | - | - | |
2.67 | - | - | - | - | |||
NFS | -1.455[ | 0.74(合并T2DM) | - | - | - | - | |
0.676 | - | - | - | - | |||
APRI | 0.5[ | 0.72(合并T2DM) | - | - | - | - | |
1.5 | - | - | - | - | |||
ELF | - | - | - | - | - | - | |
年龄 < 65岁 | |||||||
FIB?4 | 1.30[ | 总人群 | 0.708(0.658 ~ 0.757) | 75.2 | 54.2 | 27.6 | 90.4 |
2.67 | 男性 | 0.722 | - | - | - | - | |
女性 | 0.705 | - | - | - | - | ||
NFS | -1.455[ | 总人群 | 0.707(0.656 ~ 0.757) | 75.2 | 48.7 | 25.4 | 89.4 |
男性 | 0.716 | - | - | - | - | ||
0.676 | 女性 | 0.701 | - | - | - | - | |
APRI | - | - | - | - | - | - | |
ELF | 9.8[ | 总人群 | 0.85(0.81 ~ 0.88) | 87.6 | 68.4 | 37 | 95.8 |
11.3 | 男性 | 0.865 | - | - | - | - | |
女性 | 0.832 | - | - | - | - | ||
年龄 ≥ 65岁 | |||||||
FIB?4 | 1.30[ | 总人群 | 0.72(0.67 ~ 0.77) | 99.2 | 5.8 | 30.7 | 94.4 |
2.67 | 男性 | 0.699 | - | - | - | - | |
女性 | 0.729 | - | - | - | - | ||
1.30[ | 0.81(0.72 ~ 0.91) | 93 | 35 | 7 | 99 | ||
2.00(调整后的临界值) | 77 | 70 | 12 | 98 | |||
1.3[ | 0.69(合并T2DM) | - | - | - | - | ||
2.67 | - | - | - | - | |||
NFS | -1.455[ | 总人群 | 0.75(0.70 ~ 0.80) | 97.6 | 8.5 | 30.9 | 89.3 |
0.676 | 男性 | 0.707 | - | - | - | - | |
女性 | 0.767 | - | - | - | - | ||
-1.455[ | 0.81(0.71 ~ 0.92) | 93 | 20 | 6 | 98 | ||
0.676 | 57 | 85 | 71 | 76 | |||
0.12(调整后的临界值) | 80 | 70 | 12 | 99 | |||
-1.455[ | 0.65(合并T2DM) | - | - | - | - | ||
0.676 | - | - | - | - | |||
APRI | 0.5[ | 0.65(合并T2DM) | - | - | - | - | |
1.5 | - | - | - | - | |||
ELF | 9.8[ | 总人群 | 0.77(0.72~0.82) | 98.4 | 30 | 37.1 | 97.8 |
11.3 | 男性 女性 | 0.809 0.751 | - - | - - | - - | - - | |
所有年龄段 | |||||||
FIB-4 | 1.3[ 2.67 | 男性 女性 | 0.721 0.736 | 80.5 89.9 | 51.0 29.2 | 30.6 28.2 | 90.7 90.3 |
NFS | -1.455[ 0.676 | 男性 女性 | 0.721 0.744 | 81.4 88.0 | 43.3 30.3 | 27.8 28.1 | 89.7 89.1 |
APRI | - | ||||||
ELF | 9.8[ 11.3 | 男性 女性 | 0.854 0.805 | 90.7 93.7 | 63.0 47.2 | 39.6 36.4 | 96.2 96.0 |
Tab.4
Diagnostic performance, target populations, and recommendation grading of serum-based models for NAFLD-associated hepatic fibrosis"
模型 | 公式 | 适用人群 | 推荐等级 | 依据说明 |
---|---|---|---|---|
FIB-4 | 排除晚期纤维化(总人群) | +++ | 高特异性,高NPV,适用于初筛排除。 | |
BMI < 23 kg/m2或BMI < 25 kg/m2 (瘦型患者) | +++ | 诊断性能最优(AUROC0.86),推荐作为瘦型(西方国家BMI < 25 kg/m2,东方国家BMI < 23 kg/m2)患者首次筛查工具。 | ||
BMI < 30 kg/m2(筛查纳入诊断晚期纤维化) | +++ | 敏感度较高(81.8%),适用于纳入诊断。 | ||
35岁 < 年龄 ≤ 45岁 (排除晚期纤维化) | +++ | AUROC = 0.79,敏感度56%,特异度91%,适合排除诊断。 | ||
55岁 < 年龄 ≤ 64岁 | +++ | AUROC = 0.84,在中年人群中表现最佳。 | ||
合并T2DM且BMI < 30 kg/m2 | +++ | AUROC = 0.88。 | ||
合并T2DM且年龄在35 ~ 65岁 | +++ | AUROC = 0.77,相较于其他年龄段显著高。 | ||
年龄 ≤ 35岁 | + | AUROC = 0.60,诊断效能低,不推荐单独使用。 | ||
预测纤维化进展 | +++ | AUROC范围0.65 ~ 0.81[ | ||
预测肝脏相关事件 | +++ | AUROC范围0.71 ~ 0.89[ | ||
预测肝脏相关死亡率 | ++ | AUROC值0.78[ | ||
预测全因死亡率 | ++ | AUROC范围0.67 ~ 0.82[ | ||
NFS | 排除晚期纤维化(总人群) | +++ | 高特异性,高NPV,适用于初筛排除。 | |
BMI < 23 kg/m2或BMI < 25 kg/m2 (瘦型患者) | +++ | 诊断性能(AUROC = 0.85)仅次于且约等于FIB?4,推荐作为瘦型(西方国家BMI < 25 kg/m2,东方国家BMI < 23 kg/m2)患者首次筛查工具。 | ||
BMI < 30 kg/m2(排除晚期纤维化) | +++ | 特异度随BMI值降低而增加(73.7%),适用于排除诊断。 | ||
35岁 < 年龄 ≤ 45岁 (筛查诊断晚期纤维化) | +++ | AUROC = 0.86,敏感性与特异性均衡,适合筛查。 | ||
合并T2DM且BMI < 30 kg/m2 | ++ | AUROC = 0.80,优于APRI,但低于FIB-4。 | ||
合并T2DM且年龄在35 ~ 65岁 | +++ | AUROC = 0.74,相较于其他年龄段显著高但不及FIB-4。 | ||
女性≥ 65岁 | +++ | AUROC = 0.767,最高。 | ||
年龄≤ 35岁 | + | AUROC = 0.52,诊断效能低,不推荐单独使用。 | ||
预测纤维化进展 | +++ | AUROC范围0.65 ~ 0.83[ | ||
预测肝脏相关事件 | +++ | AUROC范围0.72 ~ 0.92[ | ||
预测肝脏相关死亡率 | + | 无数据支持,表中未列出相关结果,推测研究不足或适用性较低。 | ||
预测全因死亡率 | ++ | AUROC范围0.70 ~ 0.83[ | ||
APRI | 资源有限环境中的初步筛查 | ++ | 成本低,但AUROC(0.65 ~ 0.75)和NPV (< 90%)均低于其他模型。 | |
所有人群的晚期纤维化诊断 | + | 敏感度、特异度均较低,不推荐作为主要工具。 | ||
BMI < 23 kg/m2或BMI < 25 kg/m2 (瘦型患者) | + | AUROC = 0.78,低于FIB-4或NFS。 | ||
合并T2DM | + | AUROC = 0.68,性能最差。 | ||
合并T2DM且年龄在35 ~ 65岁 | ++ | AUROC = 0.72,相较于其他年龄段显著高但不及FIB-4和NFS。 | ||
预测纤维化进展 | ++ | AUROC范围0.65 ~ 0.82[ | ||
预测肝脏相关事件 | ++ | AUROC范围0.69 ~ 0.89[ | ||
预测肝脏相关死亡率 | + | AUROC值0.69[ | ||
预测全因死亡率 | + | AUROC范围0.52 ~ 0.73[ | ||
ELF | NAFLD合并T2DM | +++ | AUROC高(0.82),假阴性率低(6.7%),优于其他模型。 | |
BMI ≥ 25 kg/m2或BMI ≥ 23 kg/m2 (非瘦型患者) | +++ | AUROC = 0.83 ~ 0.85,诊断准确性高于FIB-4、NFS和APRI。 | ||
BMI ≥ 30 kg/m2(肥胖患者) | +++ | AUROC = 0.84 ~ 0.85,准确性甚至高于TE(0.84)。 | ||
< 65岁 | +++ | AUROC = 0.85,敏感度87.6%,特异度68.4%。 | ||
≥ 65岁 | ++ | AUROC = 0.77,敏感度98.4%,特异度仅30%,需调整临界值。 | ||
男性< 65岁 | +++ | AUROC = 0.865,综合性能最优。 | ||
女性≥ 65岁 | ++ | AUROC = 0.751,仅次于NFS,但成本较高。 | ||
总人群晚期纤维化筛查 | ++ | AUROC最高(0.78 ~ 0.97),高敏感度(92.4%)和低假阳性率(15.3%),但成本较高。 | ||
预测纤维化进展 | +++ | AUROC值0.79[ | ||
预测肝脏相关事件 | ++ | AUROC值0.68[ | ||
预测肝脏相关死亡率 | + | 无数据支持,表中未列出相关结果,推测研究不足或适用性较低。 | ||
预测全因死亡率 | + | 无数据支持,表中未列出相关结果,推测研究不足或适用性较低。 |
[1] | European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD)[J]. J Hepatol, 2024, 81(3):492-542. |
[2] |
ESTES C, ANSTEE Q M, ARIAS-LOSTE M T, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030[J]. J Hepatol, 2018, 69(4):896-904. doi:10.1016/j.jhep.2018.05.036
doi: 10.1016/j.jhep.2018.05.036 |
[3] |
RINELLA M E, NEUSCHWANDER-TETRI B A, SIDDIQUI M S, et al. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease[J]. Hepatology, 2023, 77(5):1797-1835. doi:10.1097/hep.0000000000000323
doi: 10.1097/hep.0000000000000323 |
[4] |
HINKSON A, LALLY H, GIBSON H, et al. Meta-analysis: Enhanced liver fibrosis test to identify hepatic fibrosis in chronic liver diseases[J]. Aliment Pharmacol Ther, 2023, 57(7):750-762. doi:10.1111/apt.17385
doi: 10.1111/apt.17385 |
[5] |
ANGULO P, KLEINER D E, DAM-LARSEN S, et al. Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease[J]. Gastroenterology, 2015, 149(2):389-97.e10. doi:10.1053/j.gastro.2015.04.043
doi: 10.1053/j.gastro.2015.04.043 |
[6] |
RASMUSSEN D N, THIELE M, JOHANSEN S, et al. Prognostic performance of 7 biomarkers compared to liver biopsy in early alcohol-related liver disease[J]. J Hepatol, 2021, 75(5):1017-1025. doi:10.1016/j.jhep.2021.05.037
doi: 10.1016/j.jhep.2021.05.037 |
[7] |
RATZIU V, CHARLOTTE F, HEURTIER A, et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease[J]. Gastroenterology, 2005, 128(7):1898-1906. doi:10.1053/j.gastro.2005.03.084
doi: 10.1053/j.gastro.2005.03.084 |
[8] |
BRAVO A A, SHETH S G, CHOPRA S. Liver biopsy[J]. N Engl J Med, 2001, 344(7):495-500. doi:10.1056/nejm200102153440706
doi: 10.1056/nejm200102153440706 |
[9] |
PAROLA M, PINZANI M. Liver fibrosis in NAFLD/NASH: from pathophysiology towards diagnostic and therapeutic strategies[J].Mol Aspects Med, 2024, 95:101231. doi:10.1016/j.mam.2023.101231
doi: 10.1016/j.mam.2023.101231 |
[10] |
LEE J, VALI Y, BOURSIER J, et al. Prognostic accuracy of FIB-4, NAFLD fibrosis score and APRI for NAFLD-related events: A systematic review[J]. Liver Int, 2021, 41(2):261-270. doi:10.1111/liv.14669
doi: 10.1111/liv.14669 |
[11] | 胡盛龙, 赵莉, 庄立琨, 等. 血清细胞角蛋白-18水平与经磁共振成像质子密度脂肪分数量化的肝脏脂肪变性程度的相关性[J]. 实用医学杂志, 2022, 38(9):1102-1107. |
[12] |
European Association for the Study of the Liver. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis - 2021 update[J]. J Hepatol, 2021, 75(3):659-689. doi:10.1016/j.jhep.2021.05.025
doi: 10.1016/j.jhep.2021.05.025 |
[13] |
KJAERGAARD M, LINDVIG K P, THORHAUGE K H, et al. Using the ELF test, FIB-4 and NAFLD fibrosis score to screen the population for liver disease[J]. J Hepatol, 2023, 79(2):277-286. doi:10.1016/j.jhep.2023.04.002
doi: 10.1016/j.jhep.2023.04.002 |
[14] |
GRAUPERA I, THIELE M, SERRA-BURRIEL M, et al. Low Accuracy of FIB-4 and NAFLD Fibrosis Scores for Screening for Liver Fibrosis in the Population[J]. Clin Gastroenterol Hepatol, 2022, 20(11):2567-2576.e6. doi:10.1016/j.cgh.2021.12.034
doi: 10.1016/j.cgh.2021.12.034 |
[15] |
SHARMA C, COCOCCIA S, ELLIS N, et al. Systematic review: Accuracy of the enhanced liver fibrosis test for diagnosing advanced liver fibrosis and cirrhosis[J]. J Gastroenterol Hepatol, 2021, 36(7):1788-1802. doi:10.1111/jgh.15482
doi: 10.1111/jgh.15482 |
[16] |
THIELE M, MADSEN B S, HANSEN J F, et al. Accuracy of the Enhanced Liver Fibrosis Test vs FibroTest, Elastography, and Indirect Markers in Detection of Advanced Fibrosis in Patients With Alcoholic Liver Disease[J]. Gastroenterology, 2018, 154(5):1369-1379. doi:10.1053/j.gastro.2018.01.005
doi: 10.1053/j.gastro.2018.01.005 |
[17] |
RINELLA M E, NEUSCHWANDER-TETRI B A, SIDDIQUI M S, et al. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease[J]. Hepatology, 2023, 77(5):1797-1835. doi:10.1097/hep.0000000000000323
doi: 10.1097/hep.0000000000000323 |
[18] |
XIAO G, ZHU S, XIAO X, et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: A meta-analysis[J]. Hepatology, 2017, 66(5):1486-1501. doi:10.1002/hep.29302
doi: 10.1002/hep.29302 |
[19] |
SANYAL A J, SHANKAR S S, YATES K P, et al. Diagnostic performance of circulating biomarkers for non-alcoholic steatohepatitis[J]. Nat Med, 2023, 29(10):2656-2664. doi:10.1038/s41591-023-02539-6
doi: 10.1038/s41591-023-02539-6 |
[20] |
ARAI T, TAKAHASHI H, SEKO Y, et al. Accuracy of the Enhanced Liver Fibrosis Test in Patients With Type 2 Diabetes Mellitus and Its Clinical Implications[J]. Clin Gastroenterol Hepatol, 2024, 22(4):789-797.e8. doi:10.1016/j.cgh.2023.11.022
doi: 10.1016/j.cgh.2023.11.022 |
[21] |
YOUNOSSI Z M, FELIX S, JEFFERS T, et al. Performance of the Enhanced Liver Fibrosis Test to Estimate Advanced Fibrosis Among Patients With Nonalcoholic Fatty Liver Disease[J]. JAMA Netw Open, 2021, 4(9):e2123923. doi:10.1001/jamanetworkopen.2021.23923
doi: 10.1001/jamanetworkopen.2021.23923 |
[22] |
RIGOR J, DIEGUES A, PRESA J, et al. Noninvasive fibrosis tools in NAFLD: Validation of APRI, BARD, FIB-4, NAFLD fibrosis score, and Hepamet fibrosis score in a Portuguese population[J]. Postgrad Med, 2022, 134(4):435-440. doi:10.1080/00325481.2022.2058285
doi: 10.1080/00325481.2022.2058285 |
[23] |
DING Y, WANG Z, NIU H, et al. FIB-4 is closer to FibroScan screen results to detecting advanced liver fibrosis and maybe facilitates NAFLD warning[J]. Medicine (Baltimore), 2023, 102(34):e34957. doi:10.1097/md.0000000000034957
doi: 10.1097/md.0000000000034957 |
[24] |
VALI Y, LEE J, BOURSIER J, et al. Enhanced liver fibrosis test for the non-invasive diagnosis of fibrosis in patients with NAFLD:A systematic review and meta-analysis[J]. J Hepatol, 2020, 73(2):252-262. doi:10.1016/j.jhep.2020.03.036
doi: 10.1016/j.jhep.2020.03.036 |
[25] | HAZZAN R, AHMAD N ABU, HABIB A S, et al. Suboptimal reliability of FIB-4 and NAFLD-fibrosis scores for staging of liver fibrosis in general population[J]. JGH Open, 2024, 8(2):e13034. |
[26] |
MANTOVANI A, PETRACCA G, BEATRICE G, et al. Non-alcoholic fatty liver disease and risk of incident diabetes mellitus: An updated meta-analysis of 501 022 adult individuals[J].Gut, 2021, 70(5):962-969. doi:10.1136/gutjnl-2020-322572
doi: 10.1136/gutjnl-2020-322572 |
[27] | 牛春燕, 陈跃, 宋用强. 初级保健和内分泌临床中非酒精性脂肪肝诊断和治疗的临床实践指南要点与解读[J]. 实用医学杂志, 2023, 39(3):267-272. |
[28] |
YOUNOSSI Z M, GOLABI P, DE AVILA L, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis[J].J Hepatol, 2019, 71(4):793-801. doi:10.1016/j.jhep.2019.06.021
doi: 10.1016/j.jhep.2019.06.021 |
[29] |
PENNISI G, ENEA M, FALCO V, et al. Noninvasive assessment of liver disease severity in patients with nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes[J]. Hepatology, 2023, 78(1):195-211. doi:10.1097/hep.0000000000000351
doi: 10.1097/hep.0000000000000351 |
[30] |
YE Q, ZOU B, YEO Y H, et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: A systematic review and meta-analysis[J].Lancet Gastroenterol Hepatol, 2020, 5(8):739-752. doi:10.1016/s2468-1253(20)30077-7
doi: 10.1016/s2468-1253(20)30077-7 |
[31] |
LONG M T, NOUREDDIN M, LIM J K. AGA Clinical Practice Update:Diagnosis and Management of Nonalcoholic Fatty Liver Disease in Lean Individuals: Expert Review[J].Gastroenterology, 2022, 163(3):764-774.e1. doi:10.1053/j.gastro.2022.06.023
doi: 10.1053/j.gastro.2022.06.023 |
[32] |
PARK H, YOON E L, ITO T, et al. Diagnostic Performance of the Fibrosis-4 Index and Nonalcoholic Fatty Liver Disease Fibrosis Score in Lean Adults With Nonalcoholic Fatty Liver Disease[J]. JAMA Netw Open, 2023, 6(8):e2329568. doi:10.1001/jamanetworkopen.2023.29568
doi: 10.1001/jamanetworkopen.2023.29568 |
[33] |
FU C, WAI J W, MUSTAPHA N R NIK, et al. Performance of Simple Fibrosis Scores in Nonobese Patients With Nonalcoholic Fatty Liver Disease[J].Clin Gastroenterol Hepatol, 2020, 18(12):2843-2845.e2. doi:10.1016/j.cgh.2019.09.027
doi: 10.1016/j.cgh.2019.09.027 |
[34] |
SEBASTIANI G, ALSHAALAN R, WONG P, et al. Prognostic Value of Non-Invasive Fibrosis and Steatosis Tools, Hepatic Venous Pressure Gradient (HVPG) and Histology in Nonalcoholic Steatohepatitis[J]. PLoS One, 2015, 10(6):e0128774. doi:10.1371/journal.pone.0128774
doi: 10.1371/journal.pone.0128774 |
[35] |
MCPHERSON S, HARDY T, DUFOUR J F, et al. Age as a Confounding Factor for the Accurate Non-Invasive Diagnosis of Advanced NAFLD Fibrosis[J].Am J Gastroenterol, 2017, 112(5):740-751. doi:10.1038/ajg.2016.453
doi: 10.1038/ajg.2016.453 |
[36] | 中华医学会肝病学分会. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版)[J]. 中华肝脏病杂志, 2024, 32(5):418-434. |
[37] |
WATTACHERIL J J, ABDELMALEK M F, LIM J K, et al. AGA Clinical Practice Update on the Role of Noninvasive Biomarkers in the Evaluation and Management of Nonalcoholic Fatty Liver Disease: Expert Review[J].Gastroenterology, 2023, 165(4):1080-1088. doi:10.1053/j.gastro.2023.06.013
doi: 10.1053/j.gastro.2023.06.013 |
[38] |
POLYZOS S A, SLAVAKIS A, KOUMERKERIDIS G, et al. Noninvasive Liver Fibrosis Tests in Patients with Nonalcoholic Fatty Liver Disease: An External Validation Cohort[J].Horm Metab Res, 2019, 51(2):134-140. doi:10.1055/a-0713-1330
doi: 10.1055/a-0713-1330 |
[39] |
JUNG J, LOOMBA R R, IMAJO K, et al. MRE combined with FIB-4(MEFIB)index in detection of candidates for pharmacological treatment of NASH-related fibrosis[J].Gut, 2021, 70(10):1946-1953. doi:10.1136/gutjnl-2020-322976
doi: 10.1136/gutjnl-2020-322976 |
[40] |
SANYAL A J, HARRISON S A, RATZIU V, et al. The Natural History of Advanced Fibrosis Due to Nonalcoholic Steatohepatitis: Data From the Simtuzumab Trials[J]. Hepatology, 2019, 70(6):1913-1927. doi:10.1002/hep.30664
doi: 10.1002/hep.30664 |
[41] |
ANGULO P, BUGIANESI E, BJORNSSON E S, et al. Simple noninvasive systems predict long-term outcomes of patients with nonalcoholic fatty liver disease[J]. Gastroenterology, 2013, 145(4):782-789.e4. doi:10.1053/j.gastro.2013.06.057
doi: 10.1053/j.gastro.2013.06.057 |
[42] |
ÖNNERHAG K, HARTMAN H, NILSSON P M, et al. Non-invasive fibrosis scoring systems can predict future metabolic complications and overall mortality in non-alcoholic fatty liver disease (NAFLD)[J]. Scand J Gastroenterol, 2019, 54(3):328-334. doi:10.1080/00365521.2019.1583366
doi: 10.1080/00365521.2019.1583366 |
[43] |
BOURSIER J, VERGNIOL J, GUILLET A, et al. Diagnostic accuracy and prognostic significance of blood fibrosis tests and liver stiffness measurement by FibroScan in non-alcoholic fatty liver disease[J]. J Hepatol, 2016, 65(3):570-578. doi:10.1016/j.jhep.2016.04.023
doi: 10.1016/j.jhep.2016.04.023 |
[44] |
MUNTEANU M, PAIS R, PETA V, et al. Long-term prognostic value of the FibroTest in patients with non-alcoholic fatty liver disease, compared to chronic hepatitis C, B, and alcoholic liver disease[J]. Aliment Pharmacol Ther, 2018, 48(10):1117-1127. doi:10.1111/apt.14990
doi: 10.1111/apt.14990 |
[45] |
ANUSHIRAVANI A, ALSWAT K, DALEKOS G N, et al. Multicenter validation of FIB-6 as a novel machine learning non-invasive score to rule out liver cirrhosis in biopsy-proven MAFLD[J]. Eur J Gastroenterol Hepatol, 2023, 35(11):1284-1288. doi:10.1097/meg.0000000000002641
doi: 10.1097/meg.0000000000002641 |
[46] |
YANG X, WANG J, ZHANG X, et al. The liver fibrosis-8 index is a predictor for all-cause mortality in cardiovascular disease patients: A cohort study[J]. Diabetes Obes Metab, 2024, 26(12):5971-5981. doi:10.1111/dom.15971
doi: 10.1111/dom.15971 |
[47] |
CALÈS P, CANIVET C M, COSTENTIN C, et al. A new generation of non-invasive tests of liver fibrosis with improved accuracy in MASLD[J]. J Hepatol, 2025, 82(5):794-804. doi:10.1016/j.jhep.2024.11.049
doi: 10.1016/j.jhep.2024.11.049 |
[48] |
SANYAL A J, FOUCQUIER J, YOUNOSSI Z M, et al. Enhanced diagnosis of advanced fibrosis and cirrhosis in individuals with NAFLD using FibroScan-based Agile scores[J]. J Hepatol, 2023, 78(2):247-259. doi:10.1016/j.jhep.2022.10.034
doi: 10.1016/j.jhep.2022.10.034 |
[1] | Na LIU,Tingting LIU,Lihui ZHANG,Liming. WANG. Relationship between fasting blood glucose and non⁃alcoholic fatty liver disease in different genders [J]. The Journal of Practical Medicine, 2025, 41(3): 347-351. |
[2] | Jingyao LI,Xiaodi ZHU,Fei SU,Yunfeng ZHANG,Nilin ZHANG,Qiquan LIU. Association of Hp infection with inflammatory factors and hepatic fibrosis progression in metabolically associated fatty liver disease with type 2 diabetes mellitus [J]. The Journal of Practical Medicine, 2025, 41(13): 2045-2051. |
[3] | Xin ZHAO,Hui LI,Xiuxiu DENG,Yujing. TAO. Antiplatelet drugs and liver fibrosis [J]. The Journal of Practical Medicine, 2024, 40(8): 1083-1087. |
[4] | Yao ZHANG,Yingxin HUO,Wei ZHAO,Rongjie TANG,Qiufang. LIAN. The relationship between blood uric acid levels and non⁃alcoholic fatty liver disease in patients with type H hypertension [J]. The Journal of Practical Medicine, 2024, 40(18): 2561-2565. |
[5] | XU Rui, HE Mingyu, LIU Xinfeng, WANG Rongpin, ZHOU Liming, DENG Feihu, DING Guoheng. . Research Progress of new magnetic resonance imaging technology in liver fibrosis [J]. The Journal of Practical Medicine, 2023, 39(1): 124-128. |
[6] |
NAN Ran, LI Yixuan..
Effect of Qinggan Huashi Huoxue decoction combined with silybin capsule on liver fibrosis in patients with alcoholic liver disease [J]. The Journal of Practical Medicine, 2022, 38(8): 1022-1026. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||