The Journal of Practical Medicine ›› 2024, Vol. 40 ›› Issue (24): 3554-3560.doi: 10.3969/j.issn.1006-5725.2024.24.019
• Reviews • Previous Articles Next Articles
Jianfang ZHANG1,2,Xueqin SUN1,2,Yeqian CUI1,2,Yang CHEN1,2,Shaobo. WANG1()
Received:
2024-08-26
Online:
2024-12-25
Published:
2024-12-23
Contact:
Shaobo. WANG
E-mail:Wshbo_98@163.com
CLC Number:
Jianfang ZHANG,Xueqin SUN,Yeqian CUI,Yang CHEN,Shaobo. WANG. Effects of VEGF inhibitors for treating cholangiocarcinoma: A review of literature[J]. The Journal of Practical Medicine, 2024, 40(24): 3554-3560.
Tab.1
Classification and Application of VEGF Inhibitors"
药物分类 | 作用机制 | 代表药物 | 作用特点 | 不良反应 |
---|---|---|---|---|
单克隆抗体 | 特异性地结合并中和VEGF或同源受体,阻断其与受体的结合,从而减少肿瘤异常血管生成 | Bevacizumab | 能延长患者PFS,但不能延长OS | 单一疗法临床效果差,会出现难以避免的并发症(可能会抑制生理性血管的生成) |
Ramucirumab | 耐药性良好,能延长晚期以及难治性CCA患者的中位PFS | |||
酪氨酸激酶 抑制剂 | 抑制VEGF受体的TK活性来阻断VEGF信号传导,有效抑制血管生成,减少血管通透性,从而阻断肿 瘤细胞的增殖并促进其凋亡 | 阿帕替尼 | 阻断CCA中VEGF通路而影响肿瘤细胞的增殖、迁移和侵袭 | 伴随反应,如高血压、蛋白尿、出血、血胆红素升高、血栓等 |
舒尼替尼 | 缓解晚期CCA,还具有良好的耐受性和较小的不良反应 | |||
安罗替尼 | 新型多靶点抑制剂;抑制VEGF信号通路传导和磷酸化水平失活、阻滞细胞周期;3级或更高不良反应发生率显著降低(相较于舒尼替尼) | |||
索拉非尼 | 抑制多种信号通路,单独用于治疗晚期CCA患者效果不理想 | |||
RNAi疗法 | 特异性地降低或沉默VEGF基因的表达来抑制其生物学活性 | Macugen | 用于糖尿病性黄斑水肿 | 递送效率低、体内稳定性差;可能引起宿主的免疫反应;脱靶效应 |
Onpattro、Givlaari、Oxlumo、Leqvio和ALN-HSD | 作用于肝脏疾病的5种获批药物 |
1 |
RIZVI S, GORES G J. Pathogenesis, diagnosis, and management of cholangiocarcinoma [J]. Gastroenterology, 2013, 145(6): 1215-1229. doi:10.1053/j.gastro.2013.10.013
doi: 10.1053/j.gastro.2013.10.013 |
2 |
BRAY F, LAVERSANNE M, SUNG H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2024, 74(3): 229-263. doi:10.3322/caac.21834
doi: 10.3322/caac.21834 |
3 |
CLEMENTS O, ELIAHOO J, KIM J U, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: A systematic review and meta-analysis [J]. J Hepatol, 2020, 72(1): 95-103. doi:10.1016/j.jhep.2019.09.007
doi: 10.1016/j.jhep.2019.09.007 |
4 |
KHAN S A, TAVOLARI S, BRANDI G. Cholangiocarcinoma: Epidemiology and risk factors [J]. Liver International, 2019, 39(S1): 19-31. doi:10.1111/liv.14095
doi: 10.1111/liv.14095 |
5 |
SØREIDE K, DOPAZO C, BERREVOET F, et al. Biliary tract cancer [J]. Eur J Surg Oncol, 2024: 108489. doi:10.1016/j.ejso.2024.108489
doi: 10.1016/j.ejso.2024.108489 |
6 |
SPOLVERATO G, VITALE A, CUCCHETTI A, et al. Can hepatic resection provide a long-term cure for patients with intrahepatic cholangiocarcinoma? [J]. Cancer, 2015, 121(22): 3998-4006. doi:10.1002/cncr.29619
doi: 10.1002/cncr.29619 |
7 | RUZZENENTE A, CONCI S, VALDEGAMBERI A, et al. Role of surgery in the treatment of intrahepatic cholangiocarcinoma [J]. Eur Rev Med Pharmacol Sci, 2015, 19(15): 2892-900. |
8 |
AISHIMA S, ODA Y. Pathogenesis and classification of intrahepatic cholangiocarcinoma: Different characters of perihilar large duct type versus peripheral small duct type [J]. J Hepatobiliary Pancreat Sci, 2015, 22(2): 94-100. doi:10.1002/jhbp.154
doi: 10.1002/jhbp.154 |
9 |
UENISHI T, YAMAMOTO T, TAKEMURA S, et al. Surgical treatment for intrahepatic cholangiocarcinoma [J]. Clin J Gastroenterol, 2014, 7(2): 87-93. doi:10.1007/s12328-014-0460-z
doi: 10.1007/s12328-014-0460-z |
10 |
BANALES J M, CARDINALE V, MACIAS R I R, et al. Cholangiocarcinoma: State-of-the-art knowledge and challenges [J]. Liver Int, 2019, 39(): 5-6. doi:10.1111/liv.14101
doi: 10.1111/liv.14101 |
11 |
DIERKS J, GASPERSZ M P, BELKOUZ A, et al. Translating the ABC-02 trial into daily practice: Outcome of palliative treatment in patients with unresectable biliary tract cancer treated with gemcitabine and cisplatin [J]. Acta Oncol, 2018, 57(6): 807-812. doi:10.1080/0284186x.2017.1418532
doi: 10.1080/0284186x.2017.1418532 |
12 |
ZHANG Y, YAN H J, WU J. The Tumor Immune Microenvironment plays a Key Role in Driving the Progression of CholangioCarcinoma [J]. Current Cancer Drug Targets, 2024, 24(7): 681-700. doi:10.2174/0115680096267791231115101107
doi: 10.2174/0115680096267791231115101107 |
13 | 李斌, 纪元. 中国抗癌协会胆道恶性肿瘤靶向及免疫治疗指南(2022)(简要版) [J]. 中国实用外科杂志, 2023, 43(5): 481-491. |
14 |
NTANASIS-STATHOPOULOS I, TSILIMIGRAS D I, GAVRIATOPOULOU M, et al. Cholangiocarcinoma: Investigations into pathway-targeted therapies [J]. Expert Rev Anticancer Ther, 2020, 20(9): 765-773. doi:10.1080/14737140.2020.1807333
doi: 10.1080/14737140.2020.1807333 |
15 |
JIANG Z, ZHOU J, LI L, et al. Pericytes in the tumor microenvironment [J]. Cancer Lett, 2023, 556: 216074. doi:10.1016/j.canlet.2023.216074
doi: 10.1016/j.canlet.2023.216074 |
16 |
SIVEEN K S, PRABHU K, KRISHNANKUTTY R, et al. Vascular Endothelial Growth Factor (VEGF) Signaling in Tumour Vascularization: Potential and Challenges [J]. Curr Vasc Pharmacol, 2017, 15(4): 339-351. doi:10.2174/1570161115666170105124038
doi: 10.2174/1570161115666170105124038 |
17 |
SHAW P, DWIVEDI S K D, BHATTACHARYA R, et al. VEGF signaling: Role in angiogenesis and beyond [J]. Biochim Biophys Acta Rev Cancer, 2024, 1879(2): 189079. doi:10.1016/j.bbcan.2024.189079
doi: 10.1016/j.bbcan.2024.189079 |
18 |
CAI C, WANG X, FU Q, et al. The VEGF expression associated with prognosis in patients with intrahepatic cholangiocarcinoma: A systematic review and meta-analysis [J]. World J Surg Oncol, 2022, 20(1): 40. doi:10.1186/s12957-022-02511-7
doi: 10.1186/s12957-022-02511-7 |
19 |
BOKHARI S M Z, HAMAR P. Vascular Endothelial Growth Factor-D (VEGF-D): An Angiogenesis Bypass in Malignant Tumors [J]. Int J Mol Sci, 2023, 24(17): 13317. doi:10.3390/ijms241713317
doi: 10.3390/ijms241713317 |
20 |
WHITE A L, BIX G J. VEGFA Isoforms as Pro-Angiogenic Therapeutics for Cerebrovascular Diseases [J]. Biomolecules, 2023, 13(4): 702. doi:10.3390/biom13040702
doi: 10.3390/biom13040702 |
21 |
LEE C, CHEN R, SUN G, et al. VEGF-B prevents excessive angiogenesis by inhibiting FGF2/FGFR1 pathway [J]. Signal Transduct Target Ther, 2023, 8(1): 305. doi:10.1038/s41392-023-01539-9
doi: 10.1038/s41392-023-01539-9 |
22 |
CADAMURO M, BRIVIO S, MERTENS J, et al. Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor lymphangiogenesis in cholangiocarcinoma [J]. J Hepatol, 2019, 70(4): 700-709. doi:10.1016/j.jhep.2018.12.004
doi: 10.1016/j.jhep.2018.12.004 |
23 | TANG D, NAGANO H, YAMAMOTO H, et al. Angiogenesis in cholangiocellular carcinoma: expression of vascular endothelial growth factor, angiopoietin-1/2, thrombospondin-1 and clinicopathological significance [J]. Oncol Rep, 2006, 15(3): 525-532. |
24 |
CALASTRI M C J, FERREIRA R F, TENANI G D, et al. Investigating VEGF. miR-145-3p, and miR-101-3p Expression in Patients with Cholangiocarcinoma [J]. Asian Pac J Cancer Prev, 2022, 23(7): 2233-2341. doi:10.31557/apjcp.2022.23.7.2233
doi: 10.31557/apjcp.2022.23.7.2233 |
25 |
MAO J, TAN L, TIAN C, et al. Research progress on rodent models and its mechanisms of liver injury [J]. Life Sci, 2024, 337: 122343. doi:10.1016/j.lfs.2023.122343
doi: 10.1016/j.lfs.2023.122343 |
26 |
ABHINAND C S, RAJU R, SOUMYA S J, et al. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis [J]. J Cell Commun Signal, 2016, 10(4): 347-354. doi:10.1007/s12079-016-0352-8
doi: 10.1007/s12079-016-0352-8 |
27 |
RIMINI M, CASADEI-GARDINI A. Angiogenesis in biliary tract cancer: targeting and therapeutic potential [J]. Expert Opin Investig Drugs, 2021, 30(4): 411-418. doi:10.1080/13543784.2021.1881479
doi: 10.1080/13543784.2021.1881479 |
28 |
MARIOTTI V, FIOROTTO R, CADAMURO M, et al. New insights on the role of vascular endothelial growth factor in biliary pathophysiology [J]. JHEP Rep, 2021, 3(3): 100251. doi:10.1016/j.jhepr.2021.100251
doi: 10.1016/j.jhepr.2021.100251 |
29 | 成芳芳, 陈庆会, 李嫣, 等. VEGF基因多态性与手足口病脑炎易患性关系研究 [J]. 国际儿科学杂志, 2020, 47(10): 746-748. |
30 | 车雅丹, 李丽霞. 小分子抗血管生成药物在晚期乳腺癌中的研究进展 [J]. 实用医学杂志, 2023, 39(22): 2866-2871. |
31 |
PEREZ-GUTIERREZ L, FERRARA N. Biology and therapeutic targeting of vascular endothelial growth factor A [J]. Nat Rev Mol Cell Biol, 2023, 24(11): 816-834. doi:10.1038/s41580-023-00631-w
doi: 10.1038/s41580-023-00631-w |
32 |
LIU Z L, CHEN H H, ZHENG L L, et al. Angiogenic signaling pathways and anti-angiogenic therapy for cancer [J]. Signal Transduct Target Ther, 2023, 8(1): 198. doi:10.1038/s41392-023-01460-1
doi: 10.1038/s41392-023-01460-1 |
33 |
PARMAR D, APTE M. Angiopoietin inhibitors: A review on targeting tumor angiogenesis [J]. Eur J Pharmacol, 2021, 899: 174021. doi:10.1016/j.ejphar.2021.174021
doi: 10.1016/j.ejphar.2021.174021 |
34 |
APTE R S, CHEN D S, FERRARA N. VEGF in Signaling and Disease: Beyond Discovery and Development [J]. Cell, 2019, 176(6): 1248-1264. doi:10.1016/j.cell.2019.01.021
doi: 10.1016/j.cell.2019.01.021 |
35 |
HSU J Y, WAKELEE H A. Monoclonal antibodies targeting vascular endothelial growth factor: current status and future challenges in cancer therapy [J]. BioDrugs, 2009, 23(5): 289-304. doi:10.2165/11317600-000000000-00000
doi: 10.2165/11317600-000000000-00000 |
36 |
MAURIZ J L, GONZALEZ-GALLEGO J. Antiangiogenic drugs: current knowledge and new approaches to cancer therapy [J]. J Pharm Sci, 2008, 97(10): 4129-4154. doi:10.1002/jps.21286
doi: 10.1002/jps.21286 |
37 |
GIGANTE E, BOUATTOUR M, BEDOYA J U, et al. Atezolizumab and bevacizumab for non-resectable or metastatic combined hepatocellular-cholangiocarcinoma: A multicentric retrospective study [J]. United European Gastroenterol J, 2024, 12(4): 429-439. doi:10.1002/ueg2.12503
doi: 10.1002/ueg2.12503 |
38 |
GARCIA J, HURWITZ H I, SANDLER A B, et al. Bevacizumab (Avastin(R)) in cancer treatment: A review of 15 years of clinical experience and future outlook [J]. Cancer Treat Rev, 2020, 86: 102017. doi:10.1016/j.ctrv.2020.102017
doi: 10.1016/j.ctrv.2020.102017 |
39 |
LEE S, SHROFF R T, MAKAWITA S, et al. Phase II Study of Ramucirumab in Advanced Biliary Tract Cancer Previously Treated By Gemcitabine-Based Chemotherapy [J]. Clin Cancer Res, 2022, 28(11): 2229-2236. doi:10.1158/1078-0432.ccr-21-3548
doi: 10.1158/1078-0432.ccr-21-3548 |
40 |
WANG Y, CHEN T, LI K, et al. Recent Advances in the Mechanism Research and Clinical Treatment of Anti-Angiogenesis in Biliary Tract Cancer [J]. Front Oncol, 2021, 11: 777617. doi:10.3389/fonc.2021.777617
doi: 10.3389/fonc.2021.777617 |
41 |
LIU Y, LI Y, WANG Y, et al. Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy [J]. J Hematol Oncol, 2022, 15(1): 89. doi:10.1186/s13045-022-01310-7
doi: 10.1186/s13045-022-01310-7 |
42 |
HSU J Y, WAKELEE H A. Monoclonal antibodies targeting vascular endothelial growth factor: Current status and future challenges in cancer therapy [J]. BioDrugs, 2009, 23(5):289-304. doi:10.2165/11317600-000000000-00000
doi: 10.2165/11317600-000000000-00000 |
43 |
ABDELGALIL A A, ALKAHTANI H M, AL-JENOOBI F I. Sorafenib [J]. Profiles Drug Subst Excip Relat Methodol, 2019, 44: 239-266. doi:10.1016/bs.podrm.2018.11.003
doi: 10.1016/bs.podrm.2018.11.003 |
44 |
GRIMALDI A M, GUIDA T, D'ATTINO R, et al. Sunitinib: bridging present and future cancer treatment [J]. Ann Oncol, 2007, 18 : vi31-4. doi:10.1093/annonc/mdm221
doi: 10.1093/annonc/mdm221 |
45 |
HUANG M, HUANG B, LI G, et al. Apatinib affect VEGF-mediated cell proliferation, migration, invasion via blocking VEGFR2/RAF/MEK/ERK and PI3K/AKT pathways in cholangiocarcinoma cell [J]. BMC Gastroenterol, 2018, 18(1): 169. doi:10.1186/s12876-018-0870-3
doi: 10.1186/s12876-018-0870-3 |
46 |
LI H, KUANG X, LIANG L, et al. The Beneficial Role of Sunitinib in Tumor Immune Surveillance by Regulating Tumor PD-L1 [J]. Adv Sci (Weinh), 2021, 8(2): 2001596. doi:10.1002/advs.202001596
doi: 10.1002/advs.202001596 |
47 |
DREYER C, SABLIN M P, BOUATTOUR M, et al. Disease control with sunitinib in advanced intrahepatic cholangiocarcinoma resistant to gemcitabine-oxaliplatin chemotherapy [J]. World J Hepatol, 2015, 7(6): 910-915. doi:10.4254/wjh.v7.i6.910
doi: 10.4254/wjh.v7.i6.910 |
48 |
EL-KHOUEIRY A B, RANKIN C J, BEN-JOSEF E, et al. SWOG 0514: A phase Ⅱ study of sorafenib in patients with unresectable or metastatic gallbladder carcinoma and cholangiocarcinoma [J]. Invest New Drugs, 2012, 30(4): 1646-1651. doi:10.1007/s10637-011-9719-0
doi: 10.1007/s10637-011-9719-0 |
49 |
SONG F, HU B, CHENG J W, et al. Anlotinib suppresses tumor progression via blocking the VEGFR2/PI3K/AKT cascade in intrahepatic cholangiocarcinoma [J]. Cell Death Dis, 2020, 11(7): 573. doi:10.1038/s41419-020-02749-7
doi: 10.1038/s41419-020-02749-7 |
50 |
SHEN G, ZHENG F, REN D, et al. Anlotinib: A novel multi-targeting tyrosine kinase inhibitor in clinical development [J]. J Hematol Oncol, 2018, 11(1): 120. doi:10.1186/s13045-018-0664-7
doi: 10.1186/s13045-018-0664-7 |
51 |
XU J, BAI Y, SUN H, et al. A single-arm, multicenter, open-label phase 2 trial of surufatinib in patients with unresectable or metastatic biliary tract cancer [J]. Cancer, 2021, 127(21): 3975-3984. doi:10.1002/cncr.33803
doi: 10.1002/cncr.33803 |
52 | 杨婷婷, 李鹏运, 郑志兵. VEGFR小分子抑制剂研究的新进展 [J]. 军事医学, 2021, 45(5): 390-396. |
53 |
ROSSI J J, ROSSI D J. siRNA Drugs: Here to Stay [J]. Mol Ther, 2021, 29(2): 431-432. doi:10.1016/j.ymthe.2021.01.015
doi: 10.1016/j.ymthe.2021.01.015 |
54 |
CORYDON I J, FABIAN-JESSING B K, JAKOBSEN T S, et al. 25 years of maturation: A systematic review of RNAi in the clinic [J]. Mol Ther Nucleic Acids, 2023, 33: 469-482. doi:10.1016/j.omtn.2023.07.018
doi: 10.1016/j.omtn.2023.07.018 |
55 |
ZHANG C, ZHAO Y, ZHANG E, et al. Co-delivery of paclitaxel and anti-VEGF siRNA by tripeptide lipid nanoparticle to enhance the anti-tumor activity for lung cancer therapy [J]. Drug Deliv, 2020, 27(1): 1397-1411. doi:10.1080/10717544.2020.1827085
doi: 10.1080/10717544.2020.1827085 |
56 |
LIU Y C, MA W H, GE Y L, et al. RNAi-mediated gene silencing of vascular endothelial growth factor C suppresses growth and induces apoptosis in mouse breast cancer in vitro and in vivo [J]. Oncol Lett, 2016, 12(5): 3896-3904. doi:10.3892/ol.2016.5158
doi: 10.3892/ol.2016.5158 |
57 |
KALATHINGAL M, RHEE Y M. Molecular mechanism of binding between a therapeutic RNA aptamer and its protein target VEGF: A molecular dynamics study [J]. J Comput Chem, 2023, 44(11): 1129-1137. doi:10.1002/jcc.27070
doi: 10.1002/jcc.27070 |
58 |
HOBEL S, KOBURGER I, JOHN M, et al. Polyethylenimine/small interfering RNA-mediated knockdown of vascular endothelial growth factor in vivo exerts anti-tumor effects synergistically with Bevacizumab [J]. J Gene Med, 2010, 12(3): 287-300. doi:10.1002/jgm.1431
doi: 10.1002/jgm.1431 |
59 |
LU S, LI J. Treatment of cholangiocarcinoma by pGCsiRNA-vascular endothelial growth factor in vivo [J]. Asian Biomed (Res Rev News), 2024, 18(2): 61-68. doi:10.2478/abm-2024-0009
doi: 10.2478/abm-2024-0009 |
60 |
WANG Y, WEI Y, CHEN L, et al. Research progress of siVEGF complex and their application in antiangiogenic therapy [J]. Int J Pharm, 2023, 643: 123251. doi:10.1016/j.ijpharm.2023.123251
doi: 10.1016/j.ijpharm.2023.123251 |
61 |
LEONG A, KIM M. The Angiopoietin-2 and TIE Pathway as a Therapeutic Target for Enhancing Antiangiogenic Therapy and Immunotherapy in Patients with Advanced Cancer [J]. Int J Mol Sci, 2020, 21(22):8689. doi:10.3390/ijms21228689
doi: 10.3390/ijms21228689 |
62 | 吴克林, 吴天英, 许海. 卡瑞利珠单抗联合化疗对老年非小细胞肺癌患者血清细胞角蛋白19片段抗原21-1、基质金属蛋白酶9表达及肿瘤生长转移的影响 [J]. 实用医学杂志, 2020, 36(20): 2830-2833. |
63 |
MA Z, LI H, LIU L. Combining PD-1 Inhibitor with VEGF/VEGFR2 Inhibitor in Chemotherapy: Report of a Patient with End-Stage Cholangiocarcinoma and Review of Literature [J]. Recent Pat Anticancer Drug Discov, 2021, 16(1): 101-107. doi:10.2174/1574892815999201231215311
doi: 10.2174/1574892815999201231215311 |
64 |
ZHOU M, JIN Y, ZHU S, et al. A phase II study to evaluate the safety and efficacy of anlotinib combined with toripalimab for advanced biliary tract cancer [J]. Clin Trans Immunol, 2024, 13(1):e1483. doi:10.1002/cti2.1483
doi: 10.1002/cti2.1483 |
65 |
SHI G M, HUANG X Y, WU D, et al. Toripalimab combined with lenvatinib and GEMOX is a promising regimen as first-line treatment for advanced intrahepatic cholangiocarcinoma: A single-center, single-arm, phase 2 study [J]. Signal Transduct Target Ther, 2023, 8(1): 106. doi:10.1038/s41392-023-01317-7
doi: 10.1038/s41392-023-01317-7 |
66 |
DONG Z, SUI C, LU J, et al. Chemotherapy combined with lenvatinib and PD-1 may be a potential better alternative option for advanced unresectable intrahepatic cholangiocarcinoma: A retrospective real-world study [J]. Front Immunol, 2024, 15: 1463574. doi:10.3389/fimmu.2024.1463574
doi: 10.3389/fimmu.2024.1463574 |
67 |
LIU J, CAO J, WANG G, et al. Abstract 944: Analysis of efficacy of receptor tyrosine kinase and immune checkpoint inhibitors and insights to potential combinatorial treatment strategies in cholangiocarcinomas [J]. Cancer Res, 2021, 81(): 944. doi:10.1158/1538-7445.am2021-944
doi: 10.1158/1538-7445.am2021-944 |
68 |
LUO J, ZHENG J, YAO H, et al. Radioactive (125)I Seed Inhibits Cell Migration and Invasion and Promotes Apoptosis by Inactivating the VEGFR2 Signaling Pathway in Cholangiocarcinoma [J]. Dose Response, 2023, 21(3): 15593258231187348. doi:10.1177/15593258231187348
doi: 10.1177/15593258231187348 |
69 |
VALLE J W, VOGEL A, DENLINGER C S, et al. Addition of ramucirumab or merestinib to standard first-line chemotherapy for locally advanced or metastatic biliary tract cancer: A randomised, double-blind, multicentre, phase 2 study [J]. Lancet Oncol, 2021, 22(10): 1468-1482. doi:10.1016/s1470-2045(21)00409-5
doi: 10.1016/s1470-2045(21)00409-5 |
70 |
ARKENAU H T, MARTIN-LIBERAL J, CALVO E, et al. Ramucirumab Plus Pembrolizumab in Patients with Previously Treated Advanced or Metastatic Biliary Tract Cancer: Nonrandomized, Open-Label, Phase I Trial (JVDF) [J]. Oncologist, 2018, 23(12): 1407-e136. doi:10.1634/theoncologist.2018-0044
doi: 10.1634/theoncologist.2018-0044 |
[1] | Jiayi CAI,Siyu CHEN,Nyulue CAI,Wende. LI. Effect of miR⁃378⁃5p on angiogenesis of glioma [J]. The Journal of Practical Medicine, 2025, 41(2): 186-194. |
[2] | Qiang FU,Zhongqi LU,Ying CHANG,Tiefeng JIN,Meihua. ZHANG. Research progress on the antitumor effects of immune checkpoint inhibitors [J]. The Journal of Practical Medicine, 2025, 41(2): 288-293. |
[3] | Yuxuan DING,Lining GUO,Jiayi SHEN,Lijun. WANG. Safety and efficacy of radiotherapy and PD⁃1/PD⁃L1 inhibitor + TKI for MSS/pMMR colorectal cancer with liver metastases [J]. The Journal of Practical Medicine, 2024, 40(9): 1293-1297. |
[4] | Xiaona MENG,Xu SUN,Huaimin LIU. Advances in the study of immune checkpoint inhibitors⁃related colitis [J]. The Journal of Practical Medicine, 2024, 40(9): 1314-1319. |
[5] | Yigang TAN,Haobin KUANG,Hongmei FU,Chunyan LI,Xiaobing ZHAO,Lijing XUE. Analysis of clinical characteristics of 33 cases of tuberculosis complicated by tumor necrosis factor⁃α inhibitor in autoimmune diseases [J]. The Journal of Practical Medicine, 2024, 40(3): 378-383. |
[6] | Yuqiao ZHANG,Weijian MEI. Landmark Achievements in Treating Solid Tumors with Immune Checkpoint Inhibitors [J]. The Journal of Practical Medicine, 2024, 40(2): 272-277. |
[7] | Shengfang YUAN,Bu WANG,Baoli XIANG,Jianqing ZHAO,Jingjing SHEN,Zhihua. ZHANG. Prediction of immune therapy efficacy and prognosis for advanced non-small cell lung cancer using peripheral blood circulation tumor DNA [J]. The Journal of Practical Medicine, 2024, 40(15): 2110-2115. |
[8] | Weifeng ZHANG,Hailong MA,Jinling. ZHANG. Effect of PCSK9 inhibitors on inflammation levels and ventricular remodeling after PCI in ST⁃elevation acute myocardial infarction [J]. The Journal of Practical Medicine, 2024, 40(15): 2142-2147. |
[9] | Shan′gao HUANG,Yueling WU,Ying. ZHANG. Aiming for the future: The latest advances in targeted therapy for ovarian cancer [J]. The Journal of Practical Medicine, 2024, 40(14): 1901-1907. |
[10] | Jun DENG,Jun WANG,Chang′e GAO,Xiao CHEN,Mingxia. SHI. Research progress of predictive biomarkers for immune⁃related adverse events [J]. The Journal of Practical Medicine, 2023, 39(20): 2561-2565. |
[11] | CAI Yanli, ZHU Jinming, ZHANG Yuehui, LUAN Xiaomei, PENG Fengyun, LI Qing, DU Changjiang. . Expression of SCUBE2 in serum and placental tissues of pregnant women with preeclampsia and its clini⁃ calsignificance [J]. The Journal of Practical Medicine, 2023, 39(12): 1518-1523. |
[12] |
XU Lu, HUANG Liyou, WANG Yanhua, WEN Linchun..
Efficacy and safety ofPD ⁃ 1 inhibitor combined with brain radiotherapy for brain metastases in patients with pan⁃negative non⁃small cell lung cancer [J]. The Journal of Practical Medicine, 2022, 38(24): 3100-3105. |
[13] |
ZHANG Meng, LIU Xuming, MAI Haochen, ZENG Zhifen..
The expression and clinical significance of SLC7A11 in KRAS mutant pancreatic cancer [J]. The Journal of Practical Medicine, 2022, 38(24): 3125-3134. |
[14] |
LI Siling, SHANG Kai, HUANG Hongxiang, CHEN Li..
Research progress of radiotherapy combined with immunotherapy in non ⁃ small cell lung cancer [J]. The Journal of Practical Medicine, 2022, 38(23): 3017-3022. |
[15] |
ZHU Zhiwen, YANG Liangfang, ZHENG Yang, HUANG Haili, HE Huijuan..
CDKN3 reduces the sensitivity of intrahepatic cholangiocarcinoma cells to cisplatin by regulating G2/M checkpoint [J]. The Journal of Practical Medicine, 2022, 38(22): 2768-2779. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||