1 |
HOENIGL M, ENOCH D A, WICHMANN D, et al. Exploring European consensus about the remaining treatment challenges and subsequent opportunities to improve the management of invasive fungal infection (IFI) in the intensive care unit [J]. Mycopathologia, 2024, 189(3):41. doi:10.1007/s11046-024-00852-3
doi: 10.1007/s11046-024-00852-3
|
2 |
ZHAO Y S, LAI Q P, TANG H, et al. Identifying the risk factors of ICU-acquired fungal infections: Clinical evidence from using machine learning [J]. Front Med (Lausanne), 2024, 11:1386161. doi:10.3389/fmed.2024.1386161
doi: 10.3389/fmed.2024.1386161
|
3 |
夏乾峰,傅琼瑶,邬强,等. 荧光定量定量检测种假丝酵母菌方法的建立[J]. 检验医学, 2015, 30(3):265-268.
|
4 |
郭毅,杨靖娴,邵冬华,等. 白色念珠菌ITS2的实时荧光定量PCR快速检测方法的建立及评价[J]. 医学研究杂志,2016,45(7):79-84.
|
5 |
WANG K, HUO L, LI Y, et al. Establishment of a rapid diagnosis method for Candida glabrata based on the ITS2 gene using recombinase polymerase amplification combined with lateral flow strips [J]. Front Cell Infect Microbiol, 2022, 28, 12:953302. doi:10.3389/fcimb.2022.953302
doi: 10.3389/fcimb.2022.953302
|
6 |
CHOE K W, LIM Y K, LEE M K. Comparison of new and old BacT/ALERT aerobic bottles for detection of Candida species [J]. PLoS One, 2023, 18(11):e0288674. . doi:10.1371/journal.pone.0288674
doi: 10.1371/journal.pone.0288674
|
7 |
李辉桃. 应用微滴式数字PCR技术快速诊断新生儿侵袭性真菌病 [J]. 中国当代儿科杂志, 2019, 21(1): 45-51.
|
8 |
SUO T, LIU X, FENG J, et al. ddPCR: a more accurate tool for SARS-CoV-2 detection in low viral load specimens [J]. Emerg Microbes Infect, 2020, 9(1):1259-1268. doi:10.1080/22221751.2020.1772678
doi: 10.1080/22221751.2020.1772678
|
9 |
ALTERI C, CENTO V, ANTONELLO M, et al. Detection and quantification of SARS-CoV-2 by droplet digital PCR in real-time PCR negative nasopharyngeal swabs from suspected COVID-19 patients [J]. PLoS One, 2020, 15(9):e0236311. doi:10.1371/journal.pone.0236311
doi: 10.1371/journal.pone.0236311
|
10 |
LINDNER L, CAYROU P, JACQUOT S, et al. Reliable and robust droplet digital PCR (ddPCR) and RT-ddPCR protocols for mouse studies [J]. Methods, 2021, 191:95-106. doi:10.1016/j.ymeth.2020.07.004
doi: 10.1016/j.ymeth.2020.07.004
|
11 |
WANG Z, CHEN Y, DENG H, et al. Quantification of intrahepatic cccDNA in HBV associated hepatocellular carcinoma by improved ddPCR method [J]. J Virol Methods, 2021, 299:114334. doi:10.1016/j.jviromet.2021.114334
doi: 10.1016/j.jviromet.2021.114334
|
12 |
CIESIELSKI M, BLACKWOOD D, CLERKIN T, et al. Assessing sensitivity and reproducibility of RT-ddPCR and RT-qPCR for the quantification of SARS-CoV-2 in wastewater [J]. J Virol Methods, 2021, 297:114230. doi:10.1016/j.jviromet.2021.114230
doi: 10.1016/j.jviromet.2021.114230
|
13 |
ARMENDÁRIZ I, FERRARI P A, FRAIMAN D, et al. Nested pool testing strategy for the diagnosis of infectious diseases [J]. Sci Rep, 2021, 11(1):18108. doi:10.1038/s41598-021-97534-7
doi: 10.1038/s41598-021-97534-7
|
14 |
CHEN B, JIANG Y F, CAO X H, et al. Droplet digital PCR as an emerging tool in detecting pathogens nucleic acids in infectious diseases [J]. Clin Chim Acta, 2021, 517:156-161. doi:10.1016/j.cca.2021.02.008
doi: 10.1016/j.cca.2021.02.008
|
15 |
KOJABAD A A, FARZANEHPOUR M, GALEH H E G, et al. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives [J]. J Med Virol, 2021, 93(7):4182-4197. doi:10.1002/jmv.26846
doi: 10.1002/jmv.26846
|
16 |
NYARUABA R, MWALIKO C, KERING K K, et al. Droplet digital PCR applications in the tuberculosis world [J]. Tuberculosis (Edinb), 2019, 117:85-92. doi:10.1016/j.tube.2019.07.001
doi: 10.1016/j.tube.2019.07.001
|
17 |
HIILLOS A L, THONIG A, KNOTT K E, et al. Droplet digital PCR as a tool for investigating dynamics of cryptic symbionts [J]. Ecol Evol, 2021,(23):17381-17396. doi:10.1002/ece3.8372
doi: 10.1002/ece3.8372
|
18 |
LI H, BAI R, ZHAO Z, et al. Application of droplet digital PCR to detect the pathogens of infectious diseases[J]. Biosci Rep, 2018, 38(6):BSR20181170. doi:10.1042/bsr20181170
doi: 10.1042/bsr20181170
|