The Journal of Practical Medicine ›› 2023, Vol. 39 ›› Issue (20): 2676-2682.doi: 10.3969/j.issn.1006-5725.2023.20.021
• Reviews • Previous Articles Next Articles
Dongxu ZHANG,Xinhua ZHAO,Huanying JIANG,Lixin ZHOU,Zhongren SUN,Hongna. YIN()
Received:
2023-07-16
Online:
2023-10-25
Published:
2023-11-15
Contact:
Hongna. YIN
E-mail:hljtcmacu@163.com
CLC Number:
Dongxu ZHANG,Xinhua ZHAO,Huanying JIANG,Lixin ZHOU,Zhongren SUN,Hongna. YIN. Research progress of m6A modification in spinal cord injury recovery[J]. The Journal of Practical Medicine, 2023, 39(20): 2676-2682.
Tab. 1
Summary of the mechanisms of m6A modification related proteins in spinal cord injury"
SCI 病理表型 | m6A 相关蛋白 | 功能 | 目标基因 | 机制 | 参考文献 |
---|---|---|---|---|---|
炎症反应 | METTL3 | 甲基转移酶 | TRAF6 | SCI后敲低METTL3抑制其以m6A依赖的方式激活TRAF6?NF? | [ |
IGF2BP1 | M6A结合蛋白 | GBP11 | SCI后IGF2BP1的敲低降低了GBP11的m6A甲基化水平及稳定性,抑制小胶质细胞的炎症反应 | [ | |
细胞凋亡 | METTL14 | 甲基转移酶 | Pri?miR?375 | SCI后METTL14的敲除可阻止pri?miR?375向抑制细胞增殖的miR?375的转化,从而抑制细胞凋亡 | [ |
METTL14 | 甲基转移酶 | EEF1A2 | SCI后敲低METTL14,可使 EEF1A2表达上调,在抑制了损伤部位细胞凋亡的同时还可减少炎症细胞因子的产生及脊髓中的神经元变性 | [ | |
胶质瘢痕 | METTL3 | 甲基转移酶 | GFAP | 敲除METTL3的SCI大鼠GFAP表达显著降低,减少了损伤部位反应性星形胶质细胞的数量,抑制了胶质瘢痕形成,但这也导致了损伤部位炎症广泛扩散,轴突再生受限,大量神经元死亡 | [ |
METTL14 | 甲基转移酶 | GFAP | SCI后METTL3在星形胶质细胞中的表达显著增加,这可能对星形胶质细胞的形态和功能产生了影响,但对于METTL3的变化对胶质瘢痕的影响还需进一步实验阐明 | [ | |
轴突再生 | METTL14 | 甲基转移酶 | AcTub | SCI后对METTL14进行敲除,轴突生长特异性标记物AcTub的表达显著上调,这表明METTL14对SCI后轴突生长具有调控作用 | [ |
1 | GILBERT E A B , LAKSHMAN N , LAU K S K , et al . Regulating Endogenous Neural Stem Cell Act-ivation to Promote Spinal Cord Injury Repair [J]. Cells,2022, 11(5):846. |
2 | BIE F , WANG K , XU T , et al . The potential roles of circular RNAs as modulators in traumatic spinal cord injury [J]. Biomed Pharmacother, 2021,141:111826. |
3 | BONIZZATO M , JAMES N D , PIDPRUZHNYKOVA G , et al . Multi-pronged neuromodulation intervention engages the residual motor circuitry to facilitate walking in a rat model of spinal cord injury [J]. Nat Commun, 2021, 12(1):1925. |
4 | ZHANG T , ZHANG S W , ZHANG S Y , et al . m6A-express: uncovering complex and condition-specific m6A regulation of gene expression [J]. Nucleic Acids Res, 2021, 49(20):e116. |
5 | 郭岩松,李思柔,李琳,等 . m6A修饰在胶质瘤中的研究进展[J]. 实用医学杂志,2023,39(13):1724-1728.. |
6 | LIU D , FAN B , LI J , et al . N6-methyladenosine modification: A potential regulatory mechanism in spinal cord injury [J]. Front Cell Neurosci, 2022, 16:989637. |
7 | LI L , XU N , LIU J , et al . m6A Methylation in Cardiovascular Diseases: From Mechanisms to Therapeutic Potential [J]. Front Genet, 2022,13:908976. |
8 | TIAN M , MAO L , ZHANG L . Crosstalk among N6-methyladenosine modification and RNAs in central nervous system injuries [J]. Front Cell Neurosci,2022, 16:1013450. |
9 | ZACCARA S , RIES R J , JAFFREY S R . Reading, writing and erasing mRNA methylation [J]. Nat Rev Mol Cell Biol, 2019, 20(10):608-624. |
10 | ZHAO W , QI X , LIU L , et al . Epigenetic Regulation of m6A Modifications in Human Cancer [J]. Mol Ther Nucleic Acids, 2020, 19:405-412. |
11 | XU Z , PENG B , CAI Y , et al . N6-methyladenosine RNA modification in cancer therapeutic resistance: Current status and perspectives [J]. Biochem Pharmacol, 2020, 182:114258. |
12 | ZENG C , HUANG W , LI Y , et al . Roles of METTL3 in cancer: mechanisms and therapeutic targeting [J]. J Hematol Oncol, 2020, 13(1):117. |
13 | OERUM S , MEYNIER V , CATALA M , et al . A comprehensive review of m6A/m6Am RNA methyltransferase structures [J]. Nucleic Acids Res,2021,49(13):7239-7255. |
14 | YANG Y , HUANG G , JIANG X , et al . Loss of Wtap results in cerebellar ataxia and degeneration of Purkinje cells [J]. J Genet Genomics, 2022,49(9):847-858. |
15 | AZZAM S K , ALSAFAR H , SAJINI A A . FTO m6A Demethylase in Obesity and Cancer: Implications and Underlying Molecular Mechanisms [J]. Int J Mol Sci,2022, 23(7):3800. |
16 | CHOKKALLA A K , JEONG S , MEHTA S L , et al . Cerebroprotective Role of N6-Met-hyladenosineDemethylase FTO (Fat Mass and Obesity-Associated Protein) After Experimental Stroke [J].Stroke, 2023, 54(1):245-254. |
17 | LIU Y , YUAN Q , XIE L . The AlkB Family of Fe (II)/Alpha-Ketoglutarate-Dependent Dioxygenases Modulates Embryogenesis through Epigenetic Regulation [J]. Curr Stem Cell Res Ther, 2018, 13(2):136-143. |
18 | COVELO MOLARES H , OBRDLIK A , POŠTULKOVÁ I , et al . The comprehensive interactomes of human adenosine RNA methyltransferases and demethylases reveal distinct functional and regulatory features [J]. Nucleic Acids Res, 2021, 49(19):10895-10910. |
19 | HUANG J , SHAO Y , GU W . Function and clinical significance of N6-methyladenosine in digestive system tumours [J]. Exp Hematol Oncol,2021, 10(1):40. |
20 | HUANG H , WENG H , SUN W , et al . Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation [J]. Nat Cell Biol, 2018, 20(3):285-295. |
21 | ORR M B , GENSEL J C . Spinal Cord Injury Scarring and Inflammation: Therapies Targeting Glial and Inflammatory Responses [J]. Neurotherapeutics, 2018, 15(3):541-553. |
22 | ZHOU X , WAHANE S , FRIEDL M S , et al . Microglia and macrophages promote corralling, wound compaction and recovery after spinal cord injury via Plexin-B2 [J]. Nat Neuro Sci, 2020, 23(3):337-350. |
23 | LIU W , RONG Y , WANG J , et al . Exosome-shuttled miR-216a-5p from hypoxic prec-onditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization [J]. J Neuroinflammation, 2020, 17(1):47. |
24 | CHEN F , HU M , SHEN Y , et al . Isorhamnetin promotes functional recovery in rats with spinal cord injury by abating oxidative stress and modulating M2 macrophages/microglia polarization [J]. Eur J Pharmacol, 2021, 895:173878. |
25 | ZHOU H , XU Z , LIAO X , et al . Low Expression of YTH Domain-Containing 1 Promotes Microglial M1 Polarization by Reducing the Stability of Sirtuin 1 mRNA [J]. Front Cell Neuro Sci, 2021, 15:774305. |
26 | WEN L , SUN W , XIA D , et al . The m6A methyltransferase METTL3 promotes LPS induced microglia inflammation through TRAF6/NF-κB pathway [J]. Neuro Report, 2022, 33(6):243-251. |
27 | DING L , WU H , WANG Y , et al . m6A Reader Igf2bp1 Regulates the Inflammatory Responses of Microglia by Stabilizing Gbp11 and Cp mRNAs [J]. Front Immunol, 2022, 13:872252. |
28 | LI Q , WEN S , YE W , et al . The potential roles of m6A modification in regulating the inflammatory response in microglia [J]. J Neuroinflammation, 2021, 18(1):149. |
29 | WU J , WANG X , LI X . N6-methyladenosine methylation regulator FTO promotes oxidative stress and induces cell apoptosis in ovarian cancer [J]. Epigenomics, 2022, 14(23):1509-1522. |
30 | HUANG W , LIN M , YANG C , et al . Rat Bone Mesenchymal Stem Cell-Derived Exosomes Loaded with miR-494 Promoting Neurofilament Regeneration and Behavioral Function Recovery after Spinal Cord Injury [J]. Oxid Med Cell Longev, 2021, 2021:1634917. |
31 | LI X , AN P , HAN F , et al . Silencing of YTHDF1 Attenuates Cerebral Stroke by Inducing PTEN Degradation and Activating the PTEN/AKT/mTOR Pathway [J]. Mol Bio technol, 2023,65(5):822-832. |
32 | WANG C X , CUI G S , LIU X , et al . METTL3-mediated m6A modification is required for cerebellar development [J]. PLoS Biol, 2018, 16(6):e2004880. |
33 | MING Y , DENG Z , TIAN X , et al . m6A Methyltransferase METTL3 Reduces Hippocampal Neuron Apoptosis in a Mouse Model of Autism Through the MALAT1/SFRP2/Wnt/β-catenin Axis [J]. Psychiatry Investig, 2022, 19(10):771-787. |
34 | WANG H , YUAN J , DANG X , et al . Mettl14-mediated m6A modification modulates neuro-n apoptosis during the repair of spinal cord injury by regulating the transformation f-rompri-mir-375 to miR-375 [J]. Cell Biosci, 2021, 11(1):52. |
35 | YANG J , XIONG L L , WANG Y C , et al . Oligodendrocyte precursor cell transplantation promotes functional recovery following contusive spinal cord injury in rats and is associate-d with altered microRNA expression [J]. Mol Med Rep, 2018, 17(1):771-782. |
36 | WIRAKIAT W , PROMMAHOM A , DHARMASAROJA P . Inhibition of the antioxidant enzyme PR-DX1 activity promotes MPP+-induced death in differentiated SH-SY5Y cells and may i-mpair its colocalization with eEF1A2 [J]. Life Sci, 2020, 258:118227. |
37 | GAO G , DUAN Y , CHANG F , et al . METTL14 promotes apoptosis of spinal cord neurons by inducing EEF1A2 m6A methylation in spinal cord injury [J]. Cell Death Discov, 2022, 8(1):15. |
38 | VISMARA I , PAPA S , VENERUSO V , et al . Selective Modulation of A1 Astrocytes by Drug-Loaded Nano-Structured Gel in Spinal Cord Injury [J]. ACS Nano, 2020, 14(1):360-371. |
39 | ZHOU Z L , XIE H , TIAN X B , et al . Microglial depletion impairs glial scar formation and aggravates inflammation partly by inhibiting STAT3 phosphorylation in astrocytes after spinal cord injury [J]. Neural Regen Res, 2023, 18(6):1325-1331. |
40 | 韦入菲,曾高峰 . 减少脊髓损伤后胶质瘢痕形成方法的研究进展[J]. 实用医学杂志,2020, 36(20):2876-2880. |
41 | TENG Y , LIU Z , CHEN X , et al . Conditional deficiency of m6A methyltransferase Mettl14 in substantia nigra alters dopaminergic neuron function [J]. J Cell Mol Med, 2021, 25(17):8567-8572. |
42 | HUANG R , ZHANG Y , BAI Y , et al . N6-Methyladenosine Modification of Fatty Acid Amide-Hydrolase Messenger RNA in Circular RNA STAG1-Regulated Astrocyte Dysfunction and Depressive-like Behaviors [J]. Biol Psychiatry, 2020, 88(5):392-404. |
43 | GE X , YE W , ZHU Y , et al . USP1/UAF1-Stabilized METTL3 Promotes Reactive Astrogliosis and Improves Functional Recovery after Spinal Cord Injury through m6A Modification of YAP1 mRNA [J]. J Neuro Sci, 2023, 43(9):1456-1474. |
44 | XING L , CAI Y , YANG T , et al . Epi transcriptomic m6A regulation following spinal cord in-jury [J]. J Neuro Sci Res, 2021, 99(3):843-857. |
45 | VARADARAJAN S G , HUNYARA J L , HAMILTON N R , et al . Central nervous system regeneration [J]. Cell, 2022, 185(1):77-94. |
46 | HOU Y , LIU X , GUO Y , et al . Strategies for Effective Neural Circuit Reconstruction After Spinal Cord Injury: Use of Stem Cells and Biomaterials [J]. World Neuro Surg, 2022, 161:82-89. |
47 | HUANG L , FU C , XIONG F , et al . Stem Cell Therapy for Spinal Cord Injury [J]. Cell Transplant, 2021, 30:963689721989266. |
48 | YU J , CHEN M , HUANG H , et al . Dynamic m6A modification regulates local translation of mRNA in axons [J]. Nucleic Acids Res, 2018, 46(3):1412-1423. |
49 | YU J , SHE Y , YANG L , et al . The m6 A Readers YTHDF1 and YTHDF2 Synergistically Control Cerebellar Parallel Fiber Growth by Regulating Local Translation of the Key Wnt5a Signaling Components in Axons [J]. Adv Sci (Weinh), 2021, 8(22):e2101329. |
50 | ZHUANG M , LI X , ZHU J , et al . The m6A reader YTHDF1 regulates axon guidance thro-ugh translational control of Robo3.1 expression [J]. Nucleic Acids Res, 2019, 47(9):4765-4777. |
51 | YOUNOSSI-HARTENSTEIN A , JONES M , HARTENSTEIN V . Embryonic development of the nervous system of the temnocephalid flatworm Craspedella pedum [J]. J Comp Neurol, 2001, 434(1):56-68. |
52 | LI C , ZHAO J , QIN T , et al . Comprehensive analysis of m6A methylation modification in chronic spinal cord injury in mice [J]. J Orthop Res, 2023,41(6):1320-1334. |
53 | LEI C , WANG Q . The Progression of N6-methyladenosine Study and Its Role in Neuro-psychiatric Disorders [J]. Int J Mol Sci, 2022, 23(11):5922. |
[1] | Cong CHEN,Huaijie XING,Min CHEN,Chaosheng ZENG,Qingjie. SU. Regulatory role of miRNAs in the pathogenesis of osteoporosis induced by spinal cord injury [J]. The Journal of Practical Medicine, 2023, 39(19): 2483-2488. |
[2] | Feng WANG,Jinglong LI,Yuxiang. MAO. Application of brain⁃computer interface in the rehabilitation of spinal cord injury [J]. The Journal of Practical Medicine, 2023, 39(17): 2285-2288. |
[3] |
ZHOU Yongxin, ZHAI Wenjing, JIA Zhiqiang, ZHAO Xiaoguang, WANG Lei, FANG Liping, ZHAI Shafei, HUANG Tao. .
Exosomes derived from miR⁃210⁃5p⁃modified mesenchymal stem cells promote recovery after spinal cord injury in rats [J]. The Journal of Practical Medicine, 2022, 38(6): 711-714. |
[4] |
LAI Weihua, LUO Sichan, TANG Muhan, WANG Min. .
Influence of the timing of decompression surgery on the prognosis of patients with acute traumatic spinal cord injury [J]. The Journal of Practical Medicine, 2022, 38(6): 738-742. |
[5] |
ZHOU Xiao⁃min, WANG Qiang, LI Zhuolun, YU Liping..
Research progress on intestinal flora in the diagnosis and treatment of spinal cord injury [J]. The Journal of Practical Medicine, 2022, 38(3): 276-280. |
[6] |
WANG Feng, LI Jinglong..
Research progress on the application of lower limb exoskeleton robot in spinal cord injury [J]. The Journal of Practical Medicine, 2022, 38(23): 3012-3016. |
[7] |
ZHANG Hao, ZHANG Yu, XIAO Shining, LIU Jiaming..
Experimental research progress of 3D printing bionic scaffold in repairing of spinal cord injury [J]. The Journal of Practical Medicine, 2022, 38(22): 2868-2873. |
[8] |
TANG Yan, XU Jun, HONG Yongfeng. .
Effect of brain⁃computer interface training on improvement of lower limb motor function in patients with spinal cord injury [J]. The Journal of Practical Medicine, 2022, 38(21): 2709-2714. |
[9] |
LI Jianwen, LI Songbo, ZHOU Jianping, FANG Guanjun, CHEN Yaoxin, LU Jianfeng, ZHU Kai, WANG Zhengwei.
Comparison of curative effect and influencing factors of different surgical timings in patients with AIS grade C and grade D acute traumatic cervical spinal cord injury [J]. The Journal of Practical Medicine, 2022, 38(21): 2727-2731. |
[10] |
GUO Ning, QIN Hewei, LI Yanjie, NIU Li, NIU Yuqing, SONG Xuemei, LIU Haoyuan. .
Mechanism of electroacupuncture for neurogenic bladder in suprsacral spinal cord injury rats through TRPV1 channel [J]. The Journal of Practical Medicine, 2021, 37(24): 3126-3131. |
[11] |
LIAN Xuehui , XIAO Hongli, DENG Jiang, HAN Ziji, QI Weilin..
Effect of local transplantation of hBDNF⁃BMSCs on the repair of spinal cord injury in rats [J]. The Journal of Practical Medicine, 2021, 37(20): 2590-2596. |
[12] | WEI Rufei, ZENG Gaofeng. The advancement of reducing the formation of glial scar after spinal cord injury [J]. The Journal of Practical Medicine, 2020, 36(20): 2876-2880. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||