实用医学杂志 ›› 2025, Vol. 41 ›› Issue (19): 3096-3105.doi: 10.3969/j.issn.1006-5725.2025.19.021

• 医学检查与临床诊断 • 上一篇    

能谱和灌注CT多参数定量分析鉴别肺癌病理分型的应用

高晓坤1,2,谢子明1,2,陶广昱2,孙炎冰2,任华2,于佳卉2,朱琳2,于红2,倪其鸣2()   

  1. 1.上海理工大学健康科学与工程学院 (上海 200090 )
    2.上海市胸科医院放射科 (上海 200030 )
  • 收稿日期:2025-07-16 出版日期:2025-10-10 发布日期:2025-10-10
  • 通讯作者: 倪其鸣 E-mail:13816011196@163.com
  • 基金资助:
    国家自然科学基金项目(82071873);国家自然科学基金青年科学基金项目(82302188);国家重点研发计划项目(2021YFC2500700);上海市人才健康研究基金项目(2022YQ060);上海市科技创新行动计划项目(22Y11911100);上海市创新医疗产品应用示范项目(24SF1904000)

The application value of multi⁃parameter quantitative analysis of spectral and perfusion CT in differentiating pathological types of lung cancer

Xiaokun GAO1,2,Ziming XIE1,2,Guangyu TAO2,Yanbing SUN2,Hua REN2,Jiahui YU2,Lin ZHU2,Hong YU2,Qiming. NI2()   

  1. *.School of Health Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200090,Shanghai,China
  • Received:2025-07-16 Online:2025-10-10 Published:2025-10-10
  • Contact: Qiming. NI E-mail:13816011196@163.com

摘要:

目的 探讨能谱CT和灌注CT参数在肺癌病理分型及预后评估中的应用价值。 方法 纳入2023年1月至2024年11月在上海市胸科医院经病理学证实的94例肺癌患者,其中肺腺癌(lung adenocarcinoma, LUAD)49例、肺鳞癌(lung squamous cell carcinoma, LUSC)30例、小细胞癌(small cell carcinoma of lung, SCLC)15例。所有患者均采用GE公司256排Revolution Apex进行能谱CT联合灌注扫描。两位影像科医生独立测量三组图像的能谱参数和灌注参数,如曲线斜率(K)、病灶区碘浓度(ICL)、有效原子序数(Zeff)、表面通透性(PS)、灌注指数(PI)等,并以此建立基于能谱CT的影像组学特征的肺癌病理亚型鉴别预测模型。按照3∶1将所有研究对象随机分为训练组与验证组,对能谱鉴别模型进行不同病理亚型间鉴别效能及动、静脉期图像鉴别效能的多维度横向比较,采用受试者工作特征(ROC)曲线评估模型效能。 结果 统计分析显示,肺腺癌的患者能谱曲线斜率、主动脉的碘浓度(ICL)、标准化碘浓度(NIC)以及平均有效原子序数(Zeff)显著高于肺鳞癌组和小细胞癌组(P < 0.05),而肺鳞癌组与小细胞癌组间这些参数差异均无统计学意义(P > 0.05)。灌注CT参数中,表面通透性(PS)在三组间差异有统计学意义(P < 0.05),而血容量(BV)、血流量(BF)、灌注指数(PI)、达峰时间(TTP)及平均通过时间(MTT)差异无统计学意义(P > 0.05)。此外,基于能谱参数构建的多因素logistic回归模型显示,LUAD和LUSC的鉴别诊断模型曲线下面积(AUC)达0.806/0.77(动脉期诊断模型训练组/测试组)和0.867/0.9(静脉期诊断模型训练组/测试组)。LUAD 和SCLC鉴别模型曲线下面积(AUC)达0.885/0.883(动脉期诊断模型训练组/测试组)和0.851/0.776(静脉期诊断模型训练组/测试组)。 结论 能谱及灌注CT成像的多维度功能代谢分析指标对癌病理亚型鉴别诊断具有很好的价值,通过联合能谱多参数构建的诊断模型可以显著提升肺腺癌、鳞癌及小细胞癌的鉴别诊断效能,为个体化治疗方案制定提供精准影像学依据。

关键词: 能谱CT, 灌注, 小细胞癌, 非小细胞肺癌, 诊断

Abstract:

Objective This study aims to explore the application value of spectral CT and perfusion CT parameters in the pathological classification and prognostic assessment of lung cancer. Methods A total of 94 lung cancer patients confirmed by pathology at Shanghai Chest Hospital from January 2023 to November 2024 were included in the study, including 49 cases of lung adenocarcinoma (LUAD), 30 cases of lung squamous cell carcinoma (LUSC), and 15 cases of small cell lung cancer (SCLC). All patients underwent spectral CT combined with perfusion scanning using a 256-slice Revolution Apex from GE. Two radiologists independently measured the spectral and perfusion parameters of the three groups of images, including spectral curve slope (K), iodine concentration in the lesion area (ICL), effective atomic number (Zeff), surface permeability (PS), and perfusion index (PI), and established a lung cancer pathological subtype discrimination prediction model based on spectral CT radiomics features. All subjects were randomly divided into a training group and a validation group at a ratio of 3∶1. The discrimination efficacy of the spectral discrimination model between different pathological subtypes and the discrimination efficacy of arterial and venous phase images were compared in multiple dimensions. The performance of the model was evaluated using the receiver operating characteristic (ROC) curve. Results Statistical analysis showed that the spectral curve slope, ICL, NIC, and Zeff of LUAD patients were significantly higher than those of LUSC and SCLC patients (P < 0.05), while there were no significant differences in these parameters between LUSC and SCLC patients (P > 0.05). Among the perfusion CT parameters, surface permeability (PS) showed significant differences among the three groups (P < 0.05), while blood volume (BV), blood flow (BF), perfusion index (PI), time to peak (TTP), and mean transit time (MTT) did not show statistical differences. The multi-factor logistic regression model based on spectral parameters showed strong discriminatory performance: the area under the curve (AUC) of the LUAD and LUSC discrimination model was 0.806/0.77 (training group/test group) in the arterial phase and 0.867/0.9 (training group/test group) in the venous phase; the AUC of the LUAD and SCLC discrimination model was 0.885/0.883 (training group/test group) in the arterial phase and 0.851/0.776 (training group/test group) in the venous phase. Conclusion This study indicates that the multi-dimensional functional metabolic analysis indicators of spectral and perfusion CT imaging have significant value in the differential diagnosis of lung cancer pathological subtypes. The diagnostic model constructed by combining multiple spectral parameters can significantly improve the discrimination efficacy of lung adenocarcinoma, squamous cell carcinoma, and small cell lung cancer, providing precise imaging evidence for the formulation of individualized treatment plans.

Key words: spectral CT, perfusion, small cell carcinoma, non-small cell lung cancer, diagnosis

中图分类号: