实用医学杂志 ›› 2024, Vol. 40 ›› Issue (24): 3561-3567.doi: 10.3969/j.issn.1006-5725.2024.24.020
收稿日期:
2024-08-26
出版日期:
2024-12-25
发布日期:
2024-12-23
通讯作者:
张浩
E-mail:hawerchina@gmail.com
基金资助:
Received:
2024-08-26
Online:
2024-12-25
Published:
2024-12-23
Contact:
Hao. ZHANG
E-mail:hawerchina@gmail.com
摘要:
肝细胞癌(hepatocellular carcinoma, HCC)是全球发病率最高的恶性肿瘤之一,且HCC早期临床表现不明显,多数患者在出现症状和体征时,已经到了中晚期且失去手术的机会;即使部分患者进行了手术治疗,术后复发较早,预后较差,后续治疗手段有限都导致了HCC高致死率。随着人们对HCC认识的加深及对其防治的重视,近年来出现了大量针对HCC的预测模型。该综述就目前HCC预测模型研究现状进行讨论,旨在比较目前认可度较高的一些预测模型的优劣以及应用范围并进一步促进其在临床中的应用。
中图分类号:
邓航,张浩. 肝细胞癌预测模型的临床应用:当前挑战与未来方向[J]. 实用医学杂志, 2024, 40(24): 3561-3567.
Hang DENG,Hao. ZHANG. Clinical application of hepatocellular carcinoma prediction models: current challenges and future directions[J]. The Journal of Practical Medicine, 2024, 40(24): 3561-3567.
表1
HCC诊断预测模型基本信息统计"
模型 | 发表 年份 | 开发人群信息 | 纳入指标 | ||
---|---|---|---|---|---|
患者数量 | 患者地区 | 患者种类 | |||
GALAD | 2014 | 670 | 英国 | CLD患者及HCC患者 | 年龄、性别、AFP、AFP-L3、DCP |
aMAP | 2020 | 3 688 | 中国 | 经治疗CHB患者 | 年龄、性别、白蛋白、胆红素、PLT |
REACH-B | 2011 | 3 584 | 亚洲 | 未经治疗CHB患者 | 年龄、性别、HBeAg、HBV、DNA、ALT |
PAGE-B | 2016 | 1 325 | 欧洲 | 经ETV或TDF治疗的CHB患者 | 年龄、性别、PLT |
REAL-B | 2019 | 5 365 | 美国、亚洲 | 经治疗CHB患者 | 年龄、性别PLT、AFP、糖尿病、 肝硬化、饮酒 |
GAAD | 2023 | 1 084 | 中国、德国、西班牙、泰国 | HCC患者以及CLD患者 | PIVKA-Ⅱ、AFP、年龄和性别 |
ASAP | 2019 | 2 198 | 中国 | HCC患者、CHB患者、HBV导致的肝硬化患者、 良性肝肿瘤患者以及健康人群 | PIVKA-Ⅱ、AFP、年龄和性别 |
1 |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6):394-424. doi:10.3322/caac.21492
doi: 10.3322/caac.21492 |
2 | 鲜林峰, 方乐天, 刘文斌, 等. 原发性肝癌流行现状、主要发病机制及防控策略[J]. 中国癌症防治杂志, 2022,14(3):320-328. |
3 |
YANG J D, HAINAUT P, GORES G J, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management[J]. Nat Rev Gastroenterol Hepatol, 2019,16(10):589-604. doi:10.1038/s41575-019-0186-y
doi: 10.1038/s41575-019-0186-y |
4 |
SINGAL A G, KANWAL F, LLOVET J M. Global trends in hepatocellular carcinoma epidemiology: Implications for screening, prevention and therapy[J]. Nat Rev Clin Oncol, 2023,20(12):864-884. doi:10.1038/s41571-023-00825-3
doi: 10.1038/s41571-023-00825-3 |
5 |
JOHNSON P, ZHOU Q, DAO D Y, et al. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2022,19(10):670-681. doi:10.1038/s41575-022-00620-y
doi: 10.1038/s41575-022-00620-y |
6 | European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma[J]. J Hepatol, 2018,69(1):182-236. |
7 |
COLLINS G S, REITSMA J B, ALTMAN D G, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement[J]. BMJ, 2015,350:g7594. doi:10.1136/bmj.g7594
doi: 10.1136/bmj.g7594 |
8 |
ALBA A C, AGORITSAS T, WALSH M, et al. Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature[J]. JAMA, 2017,318(14):1377-1384. doi:10.1001/jama.2017.12126
doi: 10.1001/jama.2017.12126 |
9 |
STEYERBERG E W, VERGOUWE Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation[J]. Eur Heart J, 2014,35(29):1925-1931. doi:10.1093/eurheartj/ehu207
doi: 10.1093/eurheartj/ehu207 |
10 |
JOHNSON P J, PIRRIE S J, COX T F, et al. The detection of hepatocellular carcinoma using a prospectively developed and validated model based on serological biomarkers[J]. Cancer Epidemiol Biomarkers Prev, 2014,23(1):144-153. doi:10.1158/1055-9965.epi-13-0870
doi: 10.1158/1055-9965.epi-13-0870 |
11 |
李鸿江. 基于血清学标志物的肝癌风险预测模型研究[D]. 北京:北京化工大学, 2022. doi:10.3760/cma.j.cn114452-20220315-00150
doi: 10.3760/cma.j.cn114452-20220315-00150 |
12 |
HANIF H, ALI M J, SUSHEELA A T, et al. Update on the applications and limitations of alpha-fetoprotein for hepatocellular carcinoma[J]. World J Gastroenterol, 2022,28(2):216-229. doi:10.3748/wjg.v28.i2.216
doi: 10.3748/wjg.v28.i2.216 |
13 |
ZHANG Y S, CHU J H, CUI S X, et al. Des-gamma-carboxy prothrombin (DCP) as a potential autologous growth factor for the development of hepatocellular carcinoma[J]. Cell Physiol Biochem, 2014,34(3):903-915. doi:10.1159/000366308
doi: 10.1159/000366308 |
14 |
BEST J, BECHMANN L P, SOWA J P, et al. GALAD Score Detects Early Hepatocellular Carcinoma in an International Cohort of Patients With Nonalcoholic Steatohepatitis[J]. Clin Gastroenterol Hepatol, 2020,18(3):728-735. doi:10.1016/j.cgh.2019.11.012
doi: 10.1016/j.cgh.2019.11.012 |
15 |
GUAN M C, ZHANG S Y, DING Q, et al. The Performance of GALAD Score for Diagnosing Hepatocellular Carcinoma in Patients with Chronic Liver Diseases: A Systematic Review and Meta-Analysis[J]. J Clin Med, 2023,12(3):949. doi:10.3390/jcm12030949
doi: 10.3390/jcm12030949 |
16 |
SCHOTTEN C, OSTERTAG B, SOWA J P, et al. GALAD Score Detects Early-Stage Hepatocellular Carcinoma in a European Cohort of Chronic Hepatitis B and C Patients[J]. Pharmaceuticals (Basel), 2021,14(8):735. doi:10.3390/ph14080735
doi: 10.3390/ph14080735 |
17 | WANG Y, WANG M, LI H, et al. A male-ABCD algorithm for hepatocellular carcinoma risk prediction in HBsAg carriers[J]. Chin J Cancer Res, 2021,33(3):352-363. |
18 |
SINGAL A G, TAYOB N, MEHTA A, et al. GALAD demonstrates high sensitivity for HCC surveillance in a cohort of patients with cirrhosis[J]. Hepatology, 2022,75(3):541-549. doi:10.1002/hep.32185
doi: 10.1002/hep.32185 |
19 | 李慧泉. 福清市高山镇HBV感染者肝癌预测风险GALAD评分相关影响因素的研究[D]. 福州:福建医科大学, 2021. |
20 | 黄晨军, 肖潇, 周琳, 等. 肝癌三项(AFP、AFP-L3%、DCP)与GALAD、类GALAD模型临床应用专家共识[J]. 检验医学, 2023,38(7):607-623. |
21 |
FAN R, PAPATHEODORIDIS G, SUN J, et al. aMAP risk score predicts hepatocellular carcinoma development in patients with chronic hepatitis[J]. J Hepatol, 2020,73(6):1368-1378. doi:10.1016/j.jhep.2020.07.025
doi: 10.1016/j.jhep.2020.07.025 |
22 | 国家卫生健康委办公厅. 原发性肝癌诊疗指南(2022年版)[J]. 浙江实用医学, 2022,27(6):528-536. |
23 | 喻苧. aMAP评分联合肝脏硬度值测定可准确评估慢性乙型肝炎患者抗病毒治疗前后的肝纤维化[D]. 广州:南方医科大学, 2023. |
24 |
FAN R, CHEN L, ZHAO S, et al. Novel, high accuracy models for hepatocellular carcinoma prediction based on longitudinal data and cell-free DNA signatures[J]. J Hepatol, 2023,79(4):933-944. doi:10.1016/j.jhep.2023.05.039
doi: 10.1016/j.jhep.2023.05.039 |
25 |
YANG H I, YUEN M F, CHAN H L, et al. Risk estimation for hepatocellular carcinoma in chronic hepatitis B (REACH-B): development and validation of a predictive score[J]. Lancet Oncol, 2011,12(6):568-574. doi:10.1016/s1470-2045(11)70077-8
doi: 10.1016/s1470-2045(11)70077-8 |
26 |
WU S, ZENG N, SUN F, et al. Hepatocellular Carcinoma Prediction Models in Chronic Hepatitis B: A Systematic Review of 14 Models and External Validation[J]. Clin Gastroenterol Hepatol, 2021,19(12):2499-2513. doi:10.1016/j.cgh.2021.02.040
doi: 10.1016/j.cgh.2021.02.040 |
27 |
KIM H Y, LAMPERTICO P, NAM J Y, et al. An artificial intelligence model to predict hepatocellular carcinoma risk in Korean and Caucasian patients with chronic hepatitis B[J]. J Hepatol, 2022,76(2):311-318. doi:10.1016/j.jhep.2021.09.025
doi: 10.1016/j.jhep.2021.09.025 |
28 |
PAPATHEODORIDIS G, DALEKOS G, SYPSA V, et al. PAGE-B predicts the risk of developing hepatocellular carcinoma in Caucasians with chronic hepatitis B on 5-year antiviral therapy[J]. J Hepatol, 2016,64(4):800-806. doi:10.1016/j.jhep.2015.11.035
doi: 10.1016/j.jhep.2015.11.035 |
29 |
COSTA A, DA S M, CASTRO R S, et al. PAGE-B and REACH-B Predicts the Risk of Developing Hepatocellular Carcinoma in Chronic Hepatitis B Patients from Northeast, Brazil[J]. Viruses, 2022,14(4):732. doi:10.3390/v14040732
doi: 10.3390/v14040732 |
30 |
GOKCEN P, GUZELBULUT F, ADALI G, et al. Validation of the PAGE-B score to predict hepatocellular carcinoma risk in caucasian chronic hepatitis B patients on treatment[J]. World J Gastroenterol, 2022,28(6):665-674. doi:10.3748/wjg.v28.i6.665
doi: 10.3748/wjg.v28.i6.665 |
31 |
YANG H I, YEH M L, WONG G L, et al. Real-world effectiveness from the Asia Pacific Rim liver consortium for HBV risk score for the prediction of hepatocellular carcinoma in chronic hepatitis B patients treated with oral antiviral therapy[J]. J Infect Dis, 2020,221(3):389-399. doi:10.1093/infdis/jiz477
doi: 10.1093/infdis/jiz477 |
32 |
PIRATVISUTH T, HOU J, TANWANDEE T, et al. Development and clinical validation of a novel algorithmic score (GAAD) for detecting HCC in prospective cohort studies[J]. Hepatol Commun, 2023,7(11):e0317. doi:10.1097/hc9.0000000000000317
doi: 10.1097/hc9.0000000000000317 |
33 |
POTE N, CAUCHY F, ALBUQUERQUE M, et al. Performance of PIVKA-II for early hepatocellular carcinoma diagnosis and prediction of microvascular invasion[J]. J Hepatol, 2015,62(4):848-854. doi:10.1016/j.jhep.2014.11.005
doi: 10.1016/j.jhep.2014.11.005 |
34 |
中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版)[J].中国实用外科杂志,2024,44(4):361-386. doi:10.3877/cma.j.issn.2095-3232.2024.04.001
doi: 10.3877/cma.j.issn.2095-3232.2024.04.001 |
35 |
YANG T, XING H, WANG G, et al. A Novel Online Calculator Based on Serum Biomarkers to Detect Hepatocellular Carcinoma among Patients with Hepatitis B[J]. Clin Chem, 2019,65(12):1543-1553. doi:10.1373/clinchem.2019.308965
doi: 10.1373/clinchem.2019.308965 |
36 | 周宁杰. 恩替卡韦抗病毒治疗对肝癌HBV感染患者的疗效及其对HBV-DNA和肝功能水平的影响[J]. 抗感染药学, 2019,16(1):113-116. |
37 |
YUEN M F, AHN S H, CHEN D S, et al. Chronic Hepatitis B Virus Infection: Disease Revisit and Management Recommendations[J]. J Clin Gastroenterol, 2016,50(4):286-294. doi:10.1097/mcg.0000000000000478
doi: 10.1097/mcg.0000000000000478 |
38 | 赫捷, 陈万青, 沈洪兵, 等. 中国人群肝癌筛查指南(2022,北京)[J]. 临床肝胆病杂志, 2022,38(8):1739-1758. |
39 | 牛一鸣. 代谢综合征与肝癌早期复发的相关性研究[D]. 银川:宁夏医科大学, 2022. |
40 |
IGUCHI K, SADA R, MATSUMOTO S, et al. DKK1-CKAP4 signal axis promotes hepatocellular carcinoma aggressiveness[J]. Cancer Sci, 2023,114(5):2063-2077. doi:10.1111/cas.15743
doi: 10.1111/cas.15743 |
41 |
XU J, AN P, WINKLER C A, et al. Dysregulated microRNAs in Hepatitis B Virus-Related Hepatocellular Carcinoma: Potential as Biomarkers and Therapeutic Targets[J]. Front Oncol, 2020,10:1271. doi:10.3389/fonc.2020.01271
doi: 10.3389/fonc.2020.01271 |
42 |
ZHOU F, SHANG W, YU X, et al. Glypican-3: A promising biomarker for hepatocellular carcinoma diagnosis and treatment[J]. Med Res Rev, 2018,38(2):741-767. doi:10.1002/med.21455
doi: 10.1002/med.21455 |
43 | 曾繁利, 王东和, 苏锐, 等. AFP、AFP-L3和DKK1联合检测对原发性肝癌的诊断价值[J]. 川北医学院学报, 2020,35(1):130-132. |
44 | 郑睿颖, 刘根焰. 机器学习在感染性疾病临床预测模型中的应用进展[J]. 中国血吸虫病防治杂志, 2023,35(3):317-321. |
45 | 黄良江, 毛德文, 郑景辉, 等. 人工智能在肝性脑病风险预测模型中的应用进展[J]. 实用医学杂志, 2024,40(3):289-294. |
46 |
IOANNOU G N, TANG W, BESTE L A, et al. Assessment of a Deep Learning Model to Predict Hepatocellular Carcinoma in Patients With Hepatitis C Cirrhosis[J]. JAMA Netw Open, 2020,3(9):e2015626. doi:10.1001/jamanetworkopen.2020.15626
doi: 10.1001/jamanetworkopen.2020.15626 |
47 |
HEATON H, FUNG S W. Explainable AI via learning to optimize[J]. Sci Rep, 2023,13(1):10103. doi:10.1038/s41598-023-36249-3
doi: 10.1038/s41598-023-36249-3 |
48 |
SHI Y, ZHU C, QI W, et al. Critical appraisal and assessment of bias among studies evaluating risk prediction models for in-hospital and 30-day mortality after percutaneous coronary intervention: a systematic review[J]. BMJ Open, 2024,14(6):e85930. doi:10.1136/bmjopen-2024-085930
doi: 10.1136/bmjopen-2024-085930 |
49 |
OKADA Y, NING Y, ONG M. Explainable artificial intelligence in emergency medicine: an overview[J]. Clin Exp Emerg Med, 2023,10(4):354-362. doi:10.15441/ceem.23.145
doi: 10.15441/ceem.23.145 |
50 | 王梓屹, 简萌, 李彬, 等. 2023年可解释人工智能技术主要发展动向分析[J]. 无人系统技术, 2024,7(2):113-120. |
51 |
DESHPANDE P, RASIN A, TCHOUA R, et al. Biomedical heterogeneous data categorization and schema mapping toward data integration[J]. Front Big Data, 2023,6:1173038. doi:10.3389/fdata.2023.1173038
doi: 10.3389/fdata.2023.1173038 |
52 |
ELMORE J G, LEE C I. Data Quality, Data Sharing, and Moving Artificial Intelligence Forward[J]. JAMA Netw Open, 2021,4(8):e2119345. doi:10.1001/jamanetworkopen.2021.19345
doi: 10.1001/jamanetworkopen.2021.19345 |
53 | 姚仁玲, 朱艺璇, 黄睿, 等. 维生素摄入量与代谢相关脂肪性肝病进程的相关性分析[J]. 实用医学杂志, 2024,40(6):820-826. |
54 | 黄庆, 邹旻红, 李旺林, 等. 左右半结肠黏液腺癌术后患者生存特征分析:一项基于SEER数据库的研究[J]. 实用医学杂志, 2021,37(10):1351-1356. |
55 | 吕艺蓁, 孙世权. 2023年度肿瘤单细胞与空间多组学研究进展盘点[J]. 中国癌症防治杂志, 2024,16(1):17-22. |
56 |
AL-KUHALI H A, SHAN M, HAEL M A, et al. Multiview clustering of multi-omics data integration by using a penalty model[J]. BMC Bioinformatics, 2022,23(1):288. doi:10.1186/s12859-022-04826-4
doi: 10.1186/s12859-022-04826-4 |
57 | 刘晓帆, 鲁志. 复杂疾病中多组学多模态数据的生物信息学研究进展[J]. 科学通报, 2024,69(30):4432-4446. |
58 |
SATHYANARAYANAN A, MUELLER T T, ALI M M, et al. Multi-omics data integration methods and their applications in psychiatric disorders[J]. Eur Neuropsychopharmacol, 2023,69:26-46. doi:10.1016/j.euroneuro.2023.01.001
doi: 10.1016/j.euroneuro.2023.01.001 |
[1] | 陈小梅,王安奇,杨积祯,于淼. m1A/m5C/m6A/m7G调控基因预测胃癌预后及免疫关联性[J]. 实用医学杂志, 2024, 40(9): 1230-1237. |
[2] | 肖仕和,李钢,刘仲海,刘珍. 脑胶质瘤组织ZEB2、CCL20表达及其与患者预后的相关性[J]. 实用医学杂志, 2024, 40(9): 1262-1267. |
[3] | 党富涛,唐映梅,付海艳,李焕龙,徐加敏,谭绪. 非生物型人工肝支持系统治疗原发性胆汁性胆管炎患者的临床疗效及预后影响[J]. 实用医学杂志, 2024, 40(7): 955-961. |
[4] | 马希雅,季虎,朱泽华,潘博,谢强,姚晓波. 根治性放化疗前18F-FDG PET/CT代谢异质性参数结合临床特征对食管鳞状细胞癌预后的预测价值[J]. 实用医学杂志, 2024, 40(7): 966-971. |
[5] | 刘晓童,苏鲜花,辛志军,高奉琼,冯加义,夏同霞. 脊柱结核患者术后并发症危险因素及术前预后营养指数的预测价值[J]. 实用医学杂志, 2024, 40(7): 972-978. |
[6] | 费发珠,芦佳骏,张帅,李浩,任宾. 肝细胞癌免疫及靶向治疗在特殊人群中的临床应用进展[J]. 实用医学杂志, 2024, 40(6): 738-742. |
[7] | 吴智鹏,张钰琴,王明刚,张荣臻,毛德文. 瞬时受体电位信号通路在肝细胞癌中的表达及生物学功能[J]. 实用医学杂志, 2024, 40(6): 743-747. |
[8] | 程玉鑫,刘亮,董适毓,李胜超,张萌. 外泌体蛋白、mRNA及非编码RNA调节肝癌发生和发展的研究进展[J]. 实用医学杂志, 2024, 40(6): 748-755. |
[9] | 严璐,史天威. Nicastrin、N1ICD及hes1蛋白在小鼠肝脏及肝癌组织中的表达[J]. 实用医学杂志, 2024, 40(6): 768-772. |
[10] | 刘伟峰,戴政,周毅彬,封凯文,魏恺,孙古乐,阳东荣,朱进. 尿液蛋白激酶Y基因启动子位点甲基化在前列腺癌早期诊断中的价值[J]. 实用医学杂志, 2024, 40(5): 688-694. |
[11] | 龙嗣博,陈燕,张鑫桐,尹颜军,杨丽梅,郑迈克,王潮虹,孙晴,晏君,施亦衡,时广利,赵艳,王桂荣. 新型冠状病毒感染者入院时血清降钙素原、白细胞介素-6和白细胞介素-8水平及其在患者预后中的意义[J]. 实用医学杂志, 2024, 40(4): 471-475. |
[12] | 宋子旭,朱光正,郭晨旭,武佳琪,张立功,钱军. SLC35A2、前叶黄素亚基2在乳腺癌中的表达及其与临床观察指标和预后的关系[J]. 实用医学杂志, 2024, 40(4): 496-502. |
[13] | 黄良江,毛德文,郑景辉,王明刚,姚春. 人工智能在肝性脑病风险预测模型中的应用进展[J]. 实用医学杂志, 2024, 40(3): 289-294. |
[14] | 王怡晨,严燕雯,宋美慧,薛祥俊,周文广,李玉权,齐玲,李光华,曾祥宗. HOXB4基因表达水平在骨髓增生异常综合征中的临床意义[J]. 实用医学杂志, 2024, 40(3): 321-325. |
[15] | 崔佳,张明明,王娜,高伟,李菲. 糖脂代谢指标联合抗磷脂抗体对动脉粥样硬化患者预后的预测价值[J]. 实用医学杂志, 2024, 40(3): 326-329. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||